Частота 868 мгц

Что лучше для электронных пультов: 433, 868 или 2400 МГц?
В последние годы в электронной технике беспроводного управления (выключатели и др.) всё более ощутима тенденция перехода на более высокие несущие частоты. А именно, с традиционных 433 МГц на 868 и 2400 МГц. Что даёт такой переход на более энергоёмкий диапазон и чем вызвано это решение конструкторов, требующее переработку большого количества готовой документации?
По опыту развития компьютеров и аппаратов мобильной связи увеличение рабочей частоты было вызвано необходимостью повышения их производительности и сопровождалось миниатюризацией и повышением плотности упаковки. Это наглядно видно каждому потребителю, пережившему несколько этапов эволюции компьютеров и сотовых телефонов. Аналогичный этап развития переживают и другие средства дистанционного управления, системы наблюдения и пожарной охраны.
Про основной недостаток полосы 433 МГц
Общепринятыми в мире стандартами по регулированию частотных диапазонов для потребительского использования без специальных разрешений и лицензий выделены определённые полосы. Так, наиболее популярным и традиционным является полоса 433-447 МГц. Диапазон обладает хорошей энергоёмкостью, обеспечивающей уверенную связь в пределах мегаполиса при небольших размерах антенны и минимальной мощности передатчика (не более 10 мВт).
С быстрым увеличением количества оборудования, работающих в этом диапазоне волн, стала ухудшаться ситуация с их электромагнитной совместимостью. Создаваемые взаимные помехи бесчисленным множеством различных электронных устройств, работающих на одной несущей частоте и находящихся вблизи, приводят к ложным срабатываниям и нестабильной работе этого оборудования. Засорённость эфира в узкой частотной полосе ухудшают стабильность и надёжность работы многих беспроводных систем.
Так, на этой частоте могут одновременно функционировать автоматические шлагбаумы и ворота, дистанционные фонари и розетки, связные радиостанции и радиоуправляемые детские игрушки. Здесь же могут работать исполнительные устройства «умного дома». Если они располагаются достаточно далеко друг от друга, то их взаимное влияние будет ослаблено. Но в условиях крупного современного города с большой плотностью населения проблемы электромагнитной совместимости являются особенно актуальными.
Про частотный диапазон 868 МГц
Устройств, работающих по беспроводной технологии, с годами становится только больше. Несмотря на использование различных методов модуляции и кодирования, применение цифрового преобразования и других способов разделения сигналов, добиться существенного улучшения ситуации с уменьшением взаимных помех не удаётся. Поэтому коренным решением проблемы является переход на другой диапазон частот, находящийся в кратной удалённости от прежней полосы, – в пределах 868-870МГц.
Данный диапазон волн также можно использовать без разрешительных лицензий. При этом по требованию надзорных органов выходная мощность излучателей радиоволн не должна превышать 25 мВт. Чем выше частота излучения, тем больше проникающая способность электромагнитных волн и их защищённость от воздействия случайных промышленных помех.

Про дальность действия радиосвязи
Дальность действия радиотехнических систем связи определяется такими факторами, как мощность передатчика, чувствительность приёмника и условия распространения электромагнитных волн. Так как мощность излучателей ограничивается требованиями стандартов, то большое значение для увеличения дальности действия приборов приобретают второй и третий из указанных выше факторов.
С повышением несущей частоты увеличивается помехозащищённость приёмника за счёт возможности использовать более узкую полосу пропускания. Это способствует повышению чувствительности приёмника, за счёт ограничения организованных и шумовых помех, а значит и дальности связи. Однако уже в гигагерцовом диапазоне эти возможности ограничиваются пределами нестабильности частоты кварцевых резонаторов. Поэтому на 868 МГц достигается чувствительность приёмных микросхем – 125 дБ/м, а на 2400 МГц – не более -102 дБ/м.
Кроме того, по способности волн преодолевать железобетонные стены диапазон 868 МГц гораздо предпочтительнее по сравнению с диапазоном 2,4 ГГц. То же самое касается и условий распространения в открытом пространстве, что объясняется особенностями строения атмосферы. На затухание волн влияет также влажность и загрязнённость воздуха. Существует эмпирическое правило радиоинженера: двукратное увеличение частоты в 2 раза сокращает дальность связи.
Более высокая частота выгодна тем, что даёт возможность уменьшать размеры антенны и повышать её эффективность излучения. Кпд антенны максимальна, когда её длина равна четверти, половине или всей длине излучаемой радиоволны. Частотам 2,4 ГГц, 868 и 433 МГц соответствуют длины волн 13, 35 и 70 см. Переход на более короткие волны также уменьшает влияние на качество связи помех от работы промышленных установок (трансформаторов, троллейбусных и трамвайных линий, промышленных генераторов и др. источников, создающих общий шумовой фон электромагнитных излучений).
С другой стороны более короткие волны теряют способность огибать препятствия (дифракция волн). 35 сантиметровые волны (868 МГц) наиболее эффективны в городских условиях с плотной застройкой домов и стационарными установками. Для мобильных устройств с постоянным перемещением установок более предпочтительна длина волны 70 см (433 МГц). Кроме того, технология производства приёмопередатчиков, работающих на частоте 868 МГц, более простая и экономичная, что обеспечивает высокую надёжность и долговечность работы.


Про габариты станций
Габариты приёмопередатчиков в основном определяются не выбором частотного диапазона и сложностью схемы, а размерами антенн. В качестве всенаправленных антенн проектировщики в большинстве случаев выбирают четвертьволновые вибраторы. При этом эффективная длина антенны для диапазонов 433 и 868 МГц составляет 17,3 и 8,2 см соответственно. Использование более коротких антенн снижает их эффективность, несмотря на применение различных схемных ухищрений в виде эквивалентов антенн.
Волны этого диапазона лучше распространяются и в коаксиальных кабелях, что позволяет легко удалить антенну от передатчика в пределах нескольких метров. Это очень удобно для мобильных устройств, устанавливаемых на транспортных средствах. Сигнал с частотой 2,4 ГГц будет сильно затухать в коаксиальном кабеле. Для удаления антенны от такого приёмопередатчика требуется специальный волновод.
Ещё раз про электромагнитную совместимость
Диапазон 2400 МГц уже использует большое количество бытовой электроники. На этой частоте функционируют роутеры беспроводного Интернета, модули Bluetooth сотовых телефонов, компьютерные приставки и внешние устройства, микроволновые печи. Эти источники могут излучать волны очень продолжительное время и учесть их работу практически невозможно.
В диапазоне 433 МГц работают системы охранной сигнализации. Однако режим их работы на излучение носит кратковременный характер, что позволяет нейтрализовать их влияние простым дублированием передаваемой информации. В отношении загруженности наиболее свободным диапазоном в России является 868 мегагерцовая полоса частот, так как она стала безлицензионной сравнительно недавно.
Для производителей устройств беспроводного дистанционного управления установлены определённые требования по обеспечению стабильности рабочей частоты, которые со временем только ужесточаются. Жёсткая привязка частоты особенно актуальна для города, где связь во многих местах обеспечивается за счёт многократного переотражения волн от многочисленных застроек и препятствий.
Про экономию электроэнергии
Закономерно, что чем больше частота излучения, тем больше электроэнергии будет потреблять передатчик. В типовом режиме стандартный ZigBee-трансивер, работающий на 2400 МГц, потребляет от сети ток 20-40 мА. Аналогичные трансиверы на частоте 868 МГц имеют значение потребляемого тока в 2 раза меньше. Данные показатели характерны для активного режима работы трансивера. В пассивном дежурном режиме потребляемый ток устройств не зависит от частотного диапазона.
Для экономии электроэнергии и увеличения быстродействия систем управления используется сонный режим работы оборудования, когда энергия потребляется только для поддержания рабочей температуры деталей без излучения в пространство. В режиме сна не происходит обмена информацией. Это обеспечивает минимальное время включения аппаратуры в активный режим без переходных процессов, что даёт львиную долю экономии потребляемой энергии.
Заключительный вывод
Современный уровень развития микроэлектронных технологий позволяет конструировать различные недорогие и экономичные телеметрические, охранные и интеллектуальные устройства беспроводной автоматики, применяемые в промышленности и в быту и работающие в нелицензионных диапазонах волн. Наиболее перспективной и эффективной частотной полосой для таких устройств по различным критериям является диапазон 868 МГц. Он оптимален в отношении электромагнитной совместимости и условий распространения радиоволн.

перейти в интернет-магазин

В рубрику «Пожарная безопасность» | К списку рубрик | К списку авторов | К списку публикаций

Сравнение дальности действия радиоканальных систем В диапазонах 433 и 868 МГц, 2,4 ГГц

Целью статьи является сравнение результатов измерений дальности действия различных радиосистем в конкретном здании с бетонными стенами и проверка соответствия полученных дальностей с заранее рассчитанными теоретическими величинами


М.С.Елькин
Специалист отдела технической поддержки компании «Аргус-Спектр»

В настоящее время на рынке систем безопасности наиболее распространены внутриобъектовые радиоканальные системы сигнализации, работающие в следующих диапазонах частот: 433 и 868 МГц, 2,4 ГГц. Это не-лицензируемые диапазоны с разрешенной максимальной мощностью передатчика 10 мВт (для 433 и 868 МГц), а также 100 мВт (для 2,4 ГГц). Однако при использовании диапазона 2,4 ГГц необходимо зарегистрировать установленное на объекте оборудование в территориальных органах Роскомнадзора (см. статью «Особенности применения радиоканальных устройств в диапазоне 2,4 ГГц», опубликованную в журнале «Системы безопасности», № 6, 2009).

Диапазон 433 МГц в России уже более 10 лет широко применяется для систем сигнализации. Несколько лет назад у нас и в Европе «открыли» новый диапазон – 868 МГц. Необходимо отметить, что в России невозможно применение радиосистем для этого диапазона, произведенных в Европе, так как ни один из европейских поддиапазонов не отвечает российским требованиям.

Диапазон 2,4 ГГц используется в основном для скоростной передачи данных в сетях WiFi, WiMAX и т.д. Производство радиоканальных систем охранно-пожарной сигнализации в этом диапазоне стало возможным с появлением маломощных передатчиков, работающих в протоколе ZigBee.

Расчет дальности радиосвязи в здании

Проведем оценку дальности радиосвязи между извещателем и приемно-контрольным прибором (ПКП) в здании. Напомним, что каждая пара радиоустройств характеризуется энергетическим запасом (потенциалом), который необходим для компенсации ослаблений радиосигнала. Для устойчивой работы на этом радиоинтервале должен быть предусмотрен энергетический запас в 20–25 дБ. Дальность радиосвязи определяется четырьмя параметрами:

  • мощность передатчика;
  • чувствительность приемника;
  • ослабление сигнала в свободном пространстве;
  • ослабление сигнала при прохождении через стены помещений.

Определим начальные условия.

Мощность передатчика
Максимальная разрешенная мощность передатчиков в диапазонах 433 и 868 МГц равняется 10 мВт. В диапазоне 2,4 ГГц разрешенная мощность составляет 100 мВт. Но, для того чтобы обеспечить несколько лет работы устройств от батарей, необходимо снизить мощность излучения до тех же 10 мВт. Таким образом, мощность передатчиков одинакова для всех радиосистем – 10 мВт.

Чувствительность приемника
Будем рассматривать радиосистемы с двухсторонним протоколом обмена, то есть в каждом устройстве используется приемопередатчик. Для радиоустройств, работающих на частотах 433 и 868 МГц, используются трансиверы, максимальная чувствительность которых равна 107 дБм. Для трансиверов диапазона 2,4 ГГц чувствительность не превышает 100 дБм. С учетом мощности излучения передатчиков получаем энергетический запас 117 дБ для диапазонов 433/868 МГц и 110 дБ для 2,4 ГГц.

Ослабление сигнала в свободном пространстве
Оно определяется рабочей частотой системы. График зависимости ослабления сигнала в свободном пространстве от расстояния представлен на рис. 1.

Ослабление сигнала при прохождении через стены помещений
Значения ослабления сигнала при прохождении через стены помещений представлены в табл. 1. Если толщина стены превышает некоторую предельную величину, то радиосигнал не будет проходить через нее. Предельная толщина стены для разных диапазонов частот представлена в табл. 2. В качестве примера возьмем здание с бетонными стенами. Будем считать, что толщина стен не превышает предельную величину и дополнительных препятствий не существует. Проведем расчет дальности устойчивой радиосвязи между прием-но-контрольным прибором и извещателем.

Рассмотрим три случая.

Расстояние 15 м, 2 стены
Диапазон 433 МГц. Ослабление сигнала в свободном пространстве: Vо = 49 дБ. Ослабление сигнала за счет препятствий: Vпр.= 2 x 10 дБ = 20 дБ. Суммарное ослабление сигнала: V∑ = 49 + 20 = 69 дБ. Энергетический запас на замирание равен: 117-69 = 48 дБ. Диапазон 868 МГц. Ослабление сигнала в свободном пространстве: Vо = 55 дБ. Ослабление сигнала за счет препятствий: Vпр.= 2 x 10 дБ = 20 дБ. Суммарное ослабление сигнала: V∑ = 55 + 20 = 75 дБ. Энергетический запас на замирание равен: 117 – 75 = 42 дБ. Диапазон 2,4 ГГц. Ослабление сигнала в свободном пространстве: Vо = 64 дБ. Ослабление сигнала за счет препятствий: Vпр.= 2 x 10 дБ = 20 дБ. Суммарное ослабление сигнала: V∑ = 64 + 20 = 84 дБ. Энергетический запас на замирание равен: 110 – 84 = 26 дБ. Энергетический запас для всех диапазонов больше 20 дБ, что достаточно для стабильной радиосвязи.

Расстояние 20 м, 3 стены
Для диапазона 433 МГц энергетический запас равен 36 дБ, для диапазона 868 МГц – 30 дБ, для диапазона 2,4 ГГц – 14 дБ. Энергетический запас больше 20 дБ только для диапазонов 433 и 868 МГц.

Расстояние 25 м, 4 стены
У диапазона 433 МГц энергетический запас равен 24 дБ, у диапазона 868 МГц – 18 дБ, у диапазона 2,4 ГГц отсутствует связь. Энергетический запас больше 20 дБ только для диапазона 433 МГц (устойчивая радиосвязь). Для диапазона 868 МГц – неустойчивая радиосвязь. Таким образом, мы определили, что расчетные значения максимальной дальности устойчивой радиосвязи для разных диапазонов отличаются и составляют:

  • диапазон 2,4 ГГц: дальность 15 м, 2 стены;
  • диапазон 868 МГц: дальность 20 м, 3 стены;
  • диапазон 433 МГц: дальность 25 м, 4 стены.

Теперь давайте сравним полученные величины с результатами практических измерений в здании.

Результаты практических измерений

Специалистами были произведены замеры дальности устойчивой радиосвязи и максимальной дальности между приемно-контрольным прибором и извещателем для каждого из рассматриваемых диапазонов. Результаты показаны на рис. 2–4. Дальность устойчивой радиосвязи – расстояние, при котором энергетический запас на быстрые и медленные замирания между приемно-контрольным прибором и извещателем не меньше 20 дБ (на рисунках отмечено зеленой заливкой).

Максимальная дальность – расстояние, при котором за период контроля приемно-контрольный прибор принимает хотя бы один тестовый сигнал от извещателя (отмечено коричневой заливкой).

Итоги сравнения

1. Теоретическая оценка радиосвязи (представленная в статье «Радиоканальные системы сигнализации. Проектирование и расчет дальности действия» в журнале «Системы безопасности», №2, 2010) подтверждается реальными измерениями. Для частоты 2,4 ГГц измеренная дальность получилась меньше расчетной. Это объясняется тем, что толщина бетонных стен в здании равна 10 см, что является предельной толщиной проникновения для указанного диапазона.

2. Наибольшая дальность радиосвязи в здании – у диапазона 433 МГц. Частота 2,4 ГГц подходит лишь для небольших объектов.

Опубликовано: Журнал «Системы безопасности» #3, 2010
Посещений: 48630

Автор

Елькин М. С.Специалист отдела технической поддержки компании «Аргус-Спектр»

Всего статей: 7

В рубрику «Пожарная безопасность» | К списку рубрик | К списку авторов | К списку публикаций

31 октября 2018

Государственная комиссия по радиочастотам (ГКРЧ) приняла решение о введении в РФ нового участка в диапазоне 868 МГц и увеличении максимальной мощности до 100 мВт (+20 дБм) для беспроводных устройств малого радиуса действия. Работа в безлицензионном диапазоне не требует от потребителя регистрации либо получения каких-либо разрешений. При этом, производитель должен выпускать изделия в соответствии с техническими параметрами радио определенными нормами ГКРЧ. С учетом последних изменений (Приложение № 12 к решению ГКРЧ от 11 сентября 2018 г. № 18-46-03-1) в диапазоне 868 МГц можно без лицензии использовать беспроводные системы передачи данных со следующими характеристиками:

Диапазон частот Технические характеристики Дополнительные параметры использования
864 — 865 МГц
  • Максимальная мощность передатчика — 25 мВт (ЭИМ)
  • Рабочий цикл < 0,1% или режим оценки занятости канала (LBT)
Запрещается использование в пределах аэропортов (аэродромов)
866 — 868 МГц
  • Максимальная мощность передатчика — 25 мВт (ЭИМ)
  • Максимальная спектральная плотность 1000 мВт/МГц (ЭИМ)
  • Рабочий цикл < 1% или режим прослушивания перед излучением (LBT)
Запрещается использование в пределах аэропортов (аэродромов)
868 — 868,2 МГц
  • Максимальная мощность передатчика — 10 мВт
  • Максимальный коэффициент усиления антенны — 3 дБ
  • Рабочий цикл < 10%
Устройства охранной радиосигнализации
868,7 — 869,2 МГц Максимальная мощность передатчика — 25 мВт (ЭИМ) нет
868,7 — 869,2 МГц
  • Максимальная мощность передатчика — 100 мВт (ЭИМ)
  • Рабочий цикл < 10% или режим прослушивания перед излучением (LBT)
нет

*цветом выделены нововведения 2018 года.

ЭИМ — эффективная излучаемая мощность :
Произведение подводимой к антенне мощности и коэффициента усиления антенной системы относительно полуволнового диполя в заданном направлении.

Для построения беспроводных систем передачи данных в диапазоне 868 МГц КОМПЭЛ предлагает большую номенклатуру приемопередатчиков 868 МГц, а также антенны, балуны и кварцевые резонаторы. Выходную мощность 100 мВт обеспечивают модули MBee-868-2.0-WIRE-SOLDER. Инженеры компании и специалисты производителей готовы оказать консультации по оптимальному выбору технологий и компонентов для создания эффективного решения для интернета вещей.

Заседание ГКРЧ

Оставьте комментарий