Энергия сжатого воздуха

Содержание

Задача № 1. Вычисление величины вредного объема газа поршневого компрессора

Условия:

Поршень одноступенчатого одноцилиндрового компрессора одинарного действия имеет диаметр d = 200 мм, а ход поршня составляет s = 150 мм. Вал компрессора вращается со скоростью n = 120 об/мин. Воздух в компрессоре претерпевает сжатие от давления P1 = 0,1 мПа до P2 = 0,32 мПа. Производительность компрессора составляет Q = 0,5 м3/мин. Принять показатель политропы m равным 1,3.

Задача:

Необходимо вычислить величину вредного объема газа в цилиндре Vвр.

Решение:

Сперва определим площадь сечения поршня F по формуле:

F = (π · d²)/4 = (3,14 · 0,2²)/4 = 0,0314 м2

Также определим объем Vп, описываемый поршнем за один ход:

Vп = F · s = 0,0314 · 0,15 = 0,00471 м3

Из формулы расчета производительности компрессора найдем значение коэффициента подачи λ (поскольку компрессор простого действия, то коэффициент z = 1):

Q = λ · z · F · s · n

λ = Q/(z · F · s · n) = 0,5/(1 · 0,0314 · 0,15 · 120) = 0,88

Теперь воспользуемся приближенной формулой расчета коэффициента подачи, чтобы найти объемный КПД насоса:

λ = λ0 · (1,01 — 0,02·P2/P1)

λ0 = λ / (1,01 — 0,02·P2/P1) = 0,88 / (1,01 — 0,02·0,32/0,1) = 0,93

Далее из формулы объемного КПД выразим и найдем величину вредного объема цилиндра:

λ0 = 1 – с·

где c = Vвр/Vп

Vвр = 1/1,3-1)] · 0,00471 = 0,000228 м3

Итого получим, что вредный объем цилиндра составляет 0,000228 м3

Задача №2. Определение расхода и потребляемой мощности компрессорного оборудования

Условия:

Одноступенчатый двухцилиндровый компрессор двойного действия имеет поршни с диаметром d = 0,6 м, величина хода которых составляет s = 0,5 м, а величина вредного пространства с = 0,036. Вал компрессора вращается со скоростью n = 180 об/мин. Воздух при температуре t = 200 в компрессоре претерпевает сжатие от давления P1 = 0,1 мПа, до P2 = 0,28 мПа. При расчетах принять показатель политропы m равным 1,2, а механический ηмех и адиабатический ηад КПД взять равными 0,95 и 0,85 соответственно.

Задача:

Необходимо определить расход Q и потребляемую мощность N компрессора.

Решение:

Вначале определим площадь поперечного сечения поршня F по формуле:

F = (π · d²)/4 = (3,14 · 0,6²)/4 = 0,2826 м2

Далее перед расчетом производительности компрессора необходимо найти коэффициент подачи, но сперва определим объемный КПД:

λ0 = 1 – с· = 1 — 0,036· = 0,95

Зная объемный КПД, воспользуемся найденным значением и с его помощью определим величину коэффициента подачи по формуле:

λ = λ0 · (1,01 – 0,02·P2/P1) = 0,95 · (1,01 – 0,02 · 0,28/0,1) = 0,91

Теперь подсчитаем производительность компрессора Q:

Q = λ · z · F · s · n

Поскольку компрессор двойного действия, то коэффициент z будет равен 2. Поскольку компрессор двухцилиндровый, то итоговое значение производительности необходимо также помножить на 2. Получим:

Q = 2 · λ · z · F · s · n = 2 · 0,91 · 2 · 0,2826 · 0,5 · 180 = 92,6 м3/мин

Массовый расход воздуха G будет равняться , где ρ – плотность воздуха, при данной температуре равная 1,189 кг/м3. Рассчитаем это значение:

G = Q · ρ = 92,6 · 1,189 = 44 кг/мин

Часовой расход будет равен

60·G = 60·44 = 2640 кг/час.

Чтобы рассчитать потребляемую мощность компрессора, предварительно необходимо вычислить величину работы, которая должна быть затрачена на сжатие газа. Для этого воспользуемся следующей формулой:

Aсж = k/(k-1) · R · t ·

В этой формуле k – показатель адиабаты, который равняется отношению теплоемкости при постоянном давлении к теплоемкости при постоянном объеме (k = СPP/CV), и для воздуха этот показатель равен 1,4. R – газовая постоянная, равная 8310/M Дж/(кг*К), где М – молярная масса газа. В случае воздуха М берется равной 29 г/моль, тогда R = 8310/29 = 286,6 Дж/(кг*К).

Подставим полученные значения в формулу работы по сжатию и найдем ее значение:

Aсж = k/(k-1) · R · t · = 1,4/(1,4-1) · 286,6 · (273+20) · = 100523 Дж/кг

После нахождения значения затрачиваемой на сжатие воздуха работы становится возможным определение потребляемой компрессором мощности по следующей формуле:

N = (G · Aсж) / (3600 · 1000 · ηмех · ηад) = (2640 · 100523) / (3600 · 1000 · 0,85 · 0,95) = 91,3 кВт

Итого получим, что расход компрессора составляет 92,6 м3/мин, а потребляемая мощность – 91,3 кВт

Задача №3 Определение количества ступеней сжатия компрессора и значения давлений на каждой ступени

Условия:

Необходимо осуществлять подачу аммиака в размере 160 м3/час под давлением 4,5 мПа. Начальное давление азота составляет 0,1 мПа, а начальная температура – 20°C. При расчетах принять максимальную степень сжатия x равной 4.

Задача:

Необходимо определить количество ступеней сжатия компрессора и значения давлений на каждой ступени.

Решение:

Сперва рассчитаем необходимое количество ступеней n, воспользовавшись формулой для определения степени сжатия:

xn = Pк/Pн

Выразим и рассчитаем значение n:

n = log(Pк/Pн) / log(x) = log(4,5/0,1) / log(4) = 2,75

Округлим получившееся значение до ближайшего большего целого числа и получим, что в компрессоре должно быть n = 3 ступени. Далее уточним степень сжатия одной ступени, положив, что степень сжатия на каждой отдельной ступени одинаково.

x = n√(Pк/Pн) = ∛(4,5/0,1) = 3,56

Рассчитаем конечное давление первой ступени Pn1 (n = 1), которое является также начальным давлением второй ступени.

Pк1 = Pн · xn = 0,1 · 3,561 = 0,356 мПа

Рассчитаем конечное давление второй ступени Pn2 (n = 2), которое является также начальным давлением второй ступени.

Pк1 = Pн · xn = 0,1 · 3,56² = 1,267 мПа

Итого в компрессоре должно быть три ступени, причем на первой ступени давление повышается с 0,1 мПа до 0,356 мПа, на второй – с 0,356 мПа до 1,267 мПа и на третьей – с 1,267 мПа до 4,5 мПа.

Задача №4. Подбор компрессора по заданным условиям

Условия:

Требуется обеспечить подачу азота Qн в размере 7,2 м3/час с начальным давлением P1 = 0,1 мПа под давлением Р2 = 0,5 мПа. В наличие имеется только одноступенчатый поршневой компрессор двойного действия. Поршень имеет диаметр d равный 80 мм, а длина его хода s составляет 110 мм, при этом объем вредного пространства равен 7% от описываемого поршнем объема. Скорость вращения вала компрессора n составляет 120 об/мин. При расчетах принять показатель политропы m равным 1,3.

Задача:

Необходимо выяснить, подходит ли имеющийся в наличии компрессор для выполнения поставленной задачи. В случае если компрессор не подходит, рассчитать, насколько необходимо увеличить частоту вращения вала, чтобы его применение стало возможным.

Решение:

Поскольку объем вредного пространства равен 7% от описываемого поршнем объема, то по определению следует, что величина вредного пространства с равна 0,07.

Также предварительно вычислим площадь поперечного сечения поршня F:

F = (π · d²)/4 = (3,14 · 0,08²)/4 = 0,005 м2

Для дальнейших расчетов необходимо рассчитать объемный КПД компрессора λ0:

λ0 = 1 – с· = 1 – 0,04· = 0,9

Зная λ0, далее найдем коэффициент подачи λ:

λ = λ0 · (1,01 – 0,02·(P2/P1)) = 0,9 · (1,01 – 0,02·0,5/0,1) = 0,82

Далее становится возможным найти производительность компрессора Q. Поскольку компрессор двойного действия, то коэффициент z будет равен 2:

Q = λ · z · F · s · n = 0,82 · 2 · 0,005 · 0,11 · 120 = 0,11 м3/мин

Выражая Q в часовом расходе, получим значение Q = 0,11 · 60 = 6,6 м3/час.

Поскольку требуемая величина подачи составляет 7,2 м3/час, то можно сделать вывод, что имеющийся в наличии компрессор не способен выполнять поставленную задачу. В таком случае рассчитаем, насколько нужно увеличить число оборотов вала для удовлетворения требованиям применимости. Для этого найдем необходимое число оборотов из соотношения:

nн/n = Qн/Q

nн = n · Qн/Q = 120 · 7,2/6,6 = 131

В таком случае имеющийся компрессор можно будет применять, если увеличить скорость вращения его вала на 131-120 = 11 об/мин.

Задача №5. Расчет фактической производительности поршневого компрессора

Условия:

Дан трехцилиндровый поршневой компрессор двойного действия. Диаметр поршней d равен 120 мм, а величина их хода s составляет 160 мм. Скорость вращения его вала n равна 360 об/мин. В компрессоре происходит сжатие метана от давления P1 = 0,3 мПа до давления P2 = 1,1 мПа. Известно, что объемный коэффициент λ0 равен 0,92.

Задача:

Необходимо рассчитать фактическую производительность поршневого компрессора.

Решение:

Предварительно вычислим площадь поперечного сечения поршней компрессора F по формуле:

F = (π · d²)/4 = (3,14 · 0,12²)/4 = 0,0113 м2

На основе исходных данных найдем величину коэффициента подачи λ по формуле:

λ = λ0 · (1,01 – 0,02 ·(P2/P1)) = 0,92 · (1,01 – 0,02·(1,1/0,3)) = 0,86

Теперь можно воспользоваться формулой для расчета производительности поршневого компрессора:

Q = λ · z · F · s · n

Здесь z – коэффициент, зависящий от числа всасывающих сторон отдельного поршня. Поскольку данный в условии задачи компрессор двойного действия, то в этом случае величина z равна 2.

Кроме того, поскольку в рассматриваемом случае компрессор трехцилиндровый, то есть три цилиндра работают параллельно друг другу, то итоговая суммарная производительность всего компрессора будет в 3 раза выше производительности отдельного поршня, поэтому в расчетную формулу необходимо добавить коэффициент три.

Суммируя все вышесказанное, имеем:

Q = 3 · λ · z · F · s · n = 3 · 0,86 · 2 · 0,0113 · 0,16 · 360 = 3,6 м3/мин.

Итого получим, что производительность рассматриваемого поршневого компрессора составляет 3,6 м3/мин или 216 м3/час.

Задача №6. Расчет производительности двухступенчатого поршневого компрессора

Условия:

В наличии имеется двухступенчатый поршневой компрессор простого действия. Поршень ступени низкого давления имеет диаметр dн = 100 мм, а его ход sн равен 125 мм. Диаметр поршня высокого давления dв равен 80 мм при величине хода sв = 125 мм. Скорость вращения вала n составляет 360 об/мин. Известно, что коэффициент подачи компрессора λ составляет 0,85.

Задача:

Необходимо рассчитать производительность компрессора.

Решение:

В случае многоступенчатых поршневых компрессоров для расчетных зависимостей используются данные ступени низкого давления, так как именно на ней происходит первичный всас газа, определяющий производительность компрессора в целом. При расчете производительности данные последующих ступеней не используются, так как на них не происходит дополнительного всаса сжимаемого газа. Отсюда следует, что для решения данной задачи достаточно знать диаметр dн и ход поршня sн ступени низкого давления.

Вычислим площадь поперечного сечения поршня ступени низкого давления:

Fн = (π · dн²)/4 = (3,14 · 0,1²)/4 = 0,00785 м2

Рассматриваемый компрессор не является многопоршневым и имеет простой тип действия (величина z = 1), отсюда следует, что конечный вид формулы расчета производительности в конкретном случае будет иметь вид:

Q = λ · Fн · sн · n = 0,85 · 0,00785 · 0,125 · 360 = 0,3 м3/мин

Получим, что производительность данного поршневого компрессора составляет 0,3 м3/мин или, при пересчете на часовой расход, 18 м3/час.

Задача №7. Расчет действительной производительности двухвинтового компрессора

Условия:

Дан двухвинтовой компрессор. Ведущий вал компрессора вращается со скоростью n=750 об/мин и имеет z=4 канала длиной L=20 см. Также известно, что площадь поперечного сечения канала ведущего вала составляет F1=5,2 см2, а аналогичная величина для ведомого вала F2 равна 5,8 см2. При расчетах коэффициент производительности λпр принять равным 0,9.

Задача:

Необходимо рассчитать действительную производительность двухвинтового компрессора Vд.

Решение:

Перед расчетом действительной производительности найдем значение производительности теоретической, не учитывающей неизбежно возникающих обратных протечек газа сквозь зазоры между роторами и корпусом компрессора.

Vт = L·z·n·(F1+F2) = 0,2·4·750·(0,052+0,058) = 66 м3/мин

Поскольку известен коэффициент производительности, учитывающий обратные протечки газа, то становится возможным определить действительную производительность данного двухвинтового компрессора:

Vд = λпр·Vт = 0,9·66 = 59,4 м3/мин

В итоге получим, что производительность данного двухвинтового компрессора равняется 59,4 м3/мин.

Задача №8. Расчет потребляемой мощности винтовым компрессором

Условия:

В наличии имеется винтовой компрессор, предназначенный для повышения давления воздуха с P1=0,6 мПа до P2=1,8 мПа. Теоретическая производительность компрессора Vт составляет 3 м3/мин. При расчетах адиабатический КПД ηад принять равным 0,76, а показатель адиабаты воздуха k принять равным 1,4.

Задача:

Необходимо рассчитать потребляемую компрессором мощность Nп.

Решение:

Для расчета теоретической мощности адиабатического сжатия винтового компрессора воспользуемся формулой:

Nад = P1 · VT · · = 600000 · 3/60 · 1,4/(1,4-1) · · 10-3 = 38,7 кВт

Теперь, когда известно значение Nад, можно рассчитать потребляемую мощность компрессора сухого сжатия:

N = Nад/ηад = 38,7/0,76 = 51 кВт

Итого получим, что потребляемая мощность данного двухвинтового компрессора равна 50 кВт.

Задача №9. Расчет потребляемой мощности двухвинтовым компрессором

Условия:

Дан двухвинтовой компрессор, работающий с производительностью Q=10 м3/мин. Рабочая среда – воздух при температуре t=200 C. Сжатие воздуха в компрессоре происходит от давления P1=0,1 мПа до давления P2=0,6 мПа. Известно, что величина обратных протечек βпр в компрессоре составляет 0,02. Внутренний адиабатический КПД компрессора ηад равен 0,8, а механический КПД ηмех равен 0,95. При расчетах показатель адиабаты воздуха k принять равным 1,4, а величину газовой постоянной для воздуха R взять 286 Дж/(кг*К).

Задача:

Необходимо рассчитать потребляемую компрессором мощность N.

Решение:

Определим значение удельной работы компрессора Aуд:

Aуд = R · Tв · · = 286 · · · = 196068 Дж/кг

Далее вычислим массовый расход воздуха G положив, что при 20°C плотность воздуха ρв составляет 1,2 кг/м3:

G = Q·ρв = 10·1,2 = 12 кг/мин

При расчете мощности компрессора необходимо учитывать наличие в нем обратных протечек рабочей среды, компенсация которых влечет за собой дополнительный расход мощности. Рассчитаем суммарный расход компрессора Gсум с учетом обратных протечек:

Gсум = G·(1+βпр) = 12·(1+0,02) = 12,24 кг/мин

Теперь становится возможным определение мощности компрессора с учетом адиабатического и механического КПД:

N = (Gсум·Aуд) / (ηад·ηмех) = (12,24·196068) / (60·1000·0,8·0,95) = 52,6 кВт

В итоге получим, что мощность данного компрессора составляет 52,6 кВт.

Задача №10. Расчет потребляемой мощности центробежным компрессором

Условия:

Дан центробежный трехступенчатый односекционный компрессор, рабочие колеса которого идентичны друг другу. Компрессор работает с объемным расходом V равным 120 м3/мин воздуха при температуре t=20°C (плотность воздуха ρ при этом будет равна 1,2 кг/м3). Также известно, что окружная скорость рабочего колеса u составляет 260 м/с, а коэффициент теоретического напора ступени ϕ равен 0,85. Общий КПД компрессора η составляет 0,9. Для первой ступени коэффициент потерь на трение βт составляет 0,007, коэффициент потерь на протечки βп равен 0,009, и при расчете принять, что для последующих степеней потери будут увеличиваться на 1%.

Задача:

Необходимо рассчитать потребляемую компрессором мощность N.

Решение:

Мощность, расходуемая на сжатие газа, может быть рассчитана по формуле:

Nвн = V · ρ · ∑

Где i – количество ступеней. Поскольку в условиях задачи сказано, что все колеса в пределах секции одинаковы, то они имеют равные окружные скорости u и коэффициенты теоретического напора ϕ, поэтому данную формулу можно преобразовать:

Nвн = V · ρ · u² · φ · ∑(1+βт+βп)i

Для первой ступени:

1 + βт + βп = 1 + 0,007 + 0,009 = 1,016

Далее, воспользовавшись допущением, что потери на последующей ступени возрастают на 1%, рассчитаем величину 1+βт+βп для второй ступени:

1,016·1,01 = 1,026

Для третьей ступени:

1,026·1,01 = 1,036

Итого получим:

Nвн = 120/60 · 1,2 · 260² · 0,85 · (1,016+1,026+1,036) · 10-3 = 424,5 кВт

Теперь становится возможным нахождение потребляемой мощности компрессора:

N = Nвн/η = 424,5/0,9 = 471,7 Вт

Итого получим, что мощность данного компрессора составляет 471,7 кВт.

Задача №11. Расчет КПД центробежного компрессора

Условия:

Дан центробежный двухступенчатый односекционный компрессор, рабочие колеса которого идентичны друг другу. Компрессор перекачивает воздух при температуре t=20°C (плотность ρ при этих условиях равна 1,2 кг/м3) при расходе V=100 м3/мин от начального давления P1=0,1 мПа до конечного давления P2=0,25 мПа. Окружная скорость колес u равняется 245 м/с, коэффициент теоретического напора ϕ равен 0,82. Общий коэффициент потерь на трение и протечки (1+ βт + βп) для первой ступени равен 1,012, для второй ступени этот коэффициент равен 1,019. Сжатие газа происходит в изоэнтропном процессе. При расчетах показатель адиабаты воздуха k принять равным 1,4, а величину газовой постоянной для воздуха R взять 286 Дж/(кг*К). Газ в условиях задачи считать несжимаемым (коэффициент сжимаемости z=1).

Задача:

Необходимо рассчитать изоэнтропный КПД компрессора ηиз.

Решение:

Изоэнтропный КПД есть отношение мощности сжатия газа в изоэнтропном Nиз процессе к внутренней мощности сжатия компрессора Nвн. Отсюда следует, что для нахождения искомой величины предварительно требуется расчет Nвн и Nиз.

Мощность сжатия газа в изоэнтропном режиме может быть определена по формуле:

Nвн = V · ρ · z · R · (273+t) · k/(k-1) · =
= 100/60 · 1,2 · 1 · 286 ·(273+20) · 1,4/(1,4-1) · · 10-3 = 175,5 кВт

Внутреннюю мощность компрессора определим по формуле:

Nвн = V · ρ · ∑ = 100/60 · 1,2 · 245² · 0,82 · (1,012+1,019) = 200 кВт.

Далее определим искомую величину:

ηиз = Nиз/Nвн = 175,5/200 = 0,88

Итого получим, что изоэнтропный КПД данного двухступенчатого односекционного компрессора равен 0,88.

Расчет и подбор трубопроводов. Оптимальный диаметр трубопровода

Вакуумные компрессорные системы, вакуумные компрессоры
Вентиляторы. Турбовентиляторы. Расчет и подбор вентиляторов
Винтовые компрессоры
Дожимная компрессорная станция
Компрессорные установки для кислого газа, водорода, агрессивных газов, коксового газа, кислорода
Мембранные компрессоры
Основные характеристики компрессора. Производительность компрессора. Мощность компрессора
Передвижные компрессоры
Расчет компрессоров. Подбор компрессорного оборудования
Ротационные воздуходувки
Паровые турбины Shin Nippon Machinery (SNM)
Турбодетандеры
Турбокомпрессоры
Центробежная компрессорная установка
Центробежные воздуходувки и газодувки
Центробежные компрессоры
Установки для получения азота
Установки для получения сжатого воздуха

Классификация компрессоров
Лопастные компрессоры
Объемные компрессоры
Применение винтовых компрессоров
Применение поршневых компрессоров
Применение центробежных компрессоров
Роторные компрессоры
Смазка цилиндров поршневых компрессоров

Классификация компрессоров
Объемные компрессоры
Применение винтовых компрессоров
Применение поршневых компрессоров
Применение центробежных компрессоров
Роторные компрессоры
Смазка цилиндров поршневых компрессоров
Винтовые компрессорные установки
Мембранные компрессоры
Основные характеристики компрессора. Производительность компрессора. Мощность компрессора
Передвижные дизельные (винтовые) компрессоры
Поршневые компрессоры
Расчет компрессоров. Подбор компрессорного оборудования
Сравнительный анализ компрессоров
Центробежные компрессоры. Азотные компрессоры

Как делают жидкий воздух? Не просто сжатием. Даже если мы сожмем газ так, что он будет столь же плотным, что и жидкость, он по-прежнему будет занимать весь сосуд. Кажется, что его молекулы неспособны собраться в жидкость. Однако если мы охладим газ ниже критической температуры, то при сжатии он сможет превратиться в жидкость. Если же его охладить, а для сжижения сжать недостаточно, он по-прежнему будет вести себя как газ, который называют паром. Пар можно превратить в жидкость простым сжатием, но, чтобы превратить в жидкость истинный газ, следует сперва охладить его. ниже критической температуры и сжать (продолжая при конденсации отбирать тепло). При наличии достаточного места любая жидкость превращается в пар.

Таким образом, каждое вещество характеризуется определенной критической температурой, выше которой оно —несжижае-мый газ, а ниже — либо пар, либо пар – жидкость, либо жидкость в зависимости от давления. Комнатная температура для большинства газов значительно выше их критической температуры, а для всех жидкостей,* разумеется, ниже ее. Азот — это газ, водяной пар — это пар, ртуть — это жидкость, а свинец — это твердое тело. На Солнце все они были бы газами, на Нептуне — твердыми телами.
Критическая температура воздуха равна —140° С, гелия — всего лишь несколько градусов выше абсолютного нуля, воды —около +365° С, углекислого газа 31° С. В обычные нежаркие дни огнетушитель, скажем, за 3/4 заполнен жидким С02, над которым находится пар. В очень жаркие дни граница жидкости исчезает и вся она превращается в пар. Это превращение можно наблюдать в стеклянной трубке (фиг. 108). При повышении температуры жидкость сильно расширяется, становясь менее плотной, тогда как плотность пара растет. Затем граница исчезает, но появляется вновь при охлаждении после внезапного «проливного дождя» капель жидкости. Хотя это и опасный опыт, но происходящие в нем изменения восхитительны.
Мы еще вернемся к проблеме критической температуры после того, как расскажем о молекулярной картине испарения.

Баллончик со сжатым воздухом применяется для выдува из труднодоступных мест пыли и грязи направленным потоком. Им чистят различные платы, клавиатуру, вентиляторы и т.д. Такой баллончик нужная вещь, но его стоимость явно завышена. В связи с этим более рентабельно сделать переходник, чтобы закачивать сжатый воздух в пустые газовые баллоны с цанговым соединением для мини горелок.

Материалы:

  • газовая горелка с цанговым соединением без электроподжига;
  • пустой газовый баллончик;
  • вентиль от камеры с металлическим колпачком;
  • распылитель от дезодоранта.

Изготовление адаптера для закачки баллона

Газовый баллончик для горелок способен выдержать давление в 17-20 атмосфер, поэтому его можно совершенно без опаски использовать для закачки воздуха, предварительно убедившись в отсутствии в нем газа. Такой баллон оснащается клапаном, который пропускает газ или воздух в обоих направлениях, но только пребывая в прижатом состоянии. Сжать его в правильное положение может цанговое крепление горелки, поэтому адаптер для заправки нужно делать именно из нее.

Трубка горелки распиливается пополам. Особенность этой самоделки в том, что собранный адаптер сможет использоваться для закачки воздухом, а потом при необходимости снова собираться в полностью работающую горелку.
Для этого нужно взять вентиль от камеры и состыковать с трубкой от половины горелки с цанговым креплением.
Эти детали спаиваются. Чтобы олово держалось надежно, нужно предварительно очистить вентиль от остатков прилипшей резины.




Затем берется колпачок от вентиля, и в нем сверлится отверстие через вершину. Далее он стороной с усиками вставляется в трубку верхней половины горелки и также припаивается.


Теперь если понадобиться использовать распиленную горелку по прямому назначению ее половинки скручиваются. Естественно при стыковке золотник из вентиля убирается.
Когда же требуется закачать в пустой баллон воздух для продувки, то на него устанавливается только половина с цангой. При этом в вентиль вкручивается золотниковый клапан. После этого к переходнику подсоединяется компрессор или ручной насос, и осуществляется закачка воздуха. Перед этим нужно открыть вентиль на самой горелке, чтобы воздух мог беспрепятственно проходить в баллончик.
С целью перестраховки лучше не качать давление больше 10 атмосфер, то есть половины от того, что может выдержать баллон. Если при закачке пользоваться ручным насосом или маленьким автомобильным компрессором, то вряд ли получится набрать больше 7-8 атм.
После заполнения воздухом на баллон устанавливается распылитель от дезодоранта с вставленной трубочкой. В ее качестве возможно применить ушную палочку. В таком виде баллон может использоваться для чистки. Поскольку он закачан атмосферным воздухом, а не специальным газом, то его хватит только на чистку одного компьютера или клавиатуры. В дальнейшем при необходимости баллон можно повторно закачать сколько угодно раз, пока его клапан не начнет травить воздух от износа.

Оставьте комментарий