Как самому сделать аккумулятор?

Батарейка является химическим источником электрического напряжения. Все имеющиеся в продаже элементы питания имеют похожие принципы действия. Положительный вывод изделия изготавливается из марганца или лития, отрицательный — из цинка или алюминия. Собрать батарейку своими руками можно из простых материалов.

Батарейки это источник электрического напряжения.

Содержание

Самодельная батарейка из подручных средств

Изготовить элемент питания можно из материалов, свойства которых похожи на характеристики используемых в промышленных условиях веществ.

Из лимона

В роли электролита выступает кислота, содержащаяся в соке фрукта. Электроды делают из тонкой проволоки, гвоздей или игл. Железный элемент является анодом, медный — катодом. Лимон разрезают пополам и помещают в небольшую емкость (банку или стакан). Провода соединяют с электродами, зачищенные концы вводят в мякоть фрукта на расстоянии 1 см друг от друга.

С помощью мультиметра измеряют напряжение, подаваемое самодельным гальваническим элементом. Если оно недостаточно высокое, несколько лимонных батарей соединяют последовательно.

Банка с электролитом

Используя этот метод, можно собрать устройство, напоминающее первый в мире аккумулятор. Электроды изготавливают из меди и алюминия. Элементы должны иметь большую площадь. Алюминиевый электрод соединяют с проводом с помощью зажима или болта, медный — припаивают. Детали погружают в банку на небольшом расстоянии друг от друга. Для фиксации применяют крышку с отверстиями. В качестве электролита используют такие составы:

Создание батарей своими руками.

  1. Нашатырь. Вещество смешивается с водой в соотношении 1:2. Использовать нашатырный спирт в качестве электролита нельзя. Подходящее вещество (хлористый аммоний) имеет вид белого порошка без запаха. Его используют в качестве удобрения или флюса для пайки.
  2. Раствор серной кислоты. Вещество смешивают с водой в соотношении 1:5. Нельзя наливать кислоту первой. В таком случае добавляемая вода закипает, брызги попадают на кожу и одежду человека.

Раствор наливают в стеклянную емкость так, чтобы расстояние до краев банки составляло не менее 2 мм. С помощью мультиметра замеряют сопротивление и вычисляют нужное количество батарей. Принцип действия самодельного элемента сходен с таковым у солевого источника питания.

Медные монеты

Электроды изготавливают из алюминия и меди, в качестве электролита используют уксусную кислоту 9%. Монеты очищают от загрязнений, выдерживая в уксусе. Из картона и фольги вырезают кружки. Картонные изделия вымачивают в растворе уксусной кислоты, они должны впитать электролит. Из кружков и монет выкладывают столбик.

Первой кладется картонная деталь, второй — из фольги, третьей — монета. К крайним элементам заранее подсоединяют провода. Вместо пайки кабели можно прижать к металлическим деталям и заклеить скотчем. При эксплуатации батарейки монета становится непригодной. Не стоит изготавливать источники питания из ценных изделий.

Батарейка в пивной банке

Отрицательным выводом является корпус алюминиевой емкости, положительным — графитовый стержень. Также потребуются угольная пыль, пенопласт, вода, парафиновые свечи и соль. Верх банки снимают, из пенопласта вырезают кружок, который вставляют в емкость. Заранее проделывают отверстие для стержня. Последний устанавливают в центральной части банки. Оставшееся пространство заполняют угольной пылью. Материал пропитывают водным раствором соли (3 ст. л. продукта на 0,5 л воды). Края банки заливают парафином.

Картошка, соль и зубная паста

Батарейка из картошки предназначена для разового использования. Ее применяют для получения искры путем замыкания проводов. Для изготовления элемента потребуется крупная картофелина, изолированные медные кабели, соль, деревянные палочки и зубная паста. Сборку выполняют так:

  1. Картофель разрезают на 2 равные части. В одной половине формируют выемку, куда добавляют соль и пасту.
  2. Ингредиенты перемешивают до однородной консистенции. Электролит должен заполнить углубление.
  3. В другой половине картофелины проделывают 2 отверстия на расстоянии 1-2 см. Они должны совпасть с заполненным углублением.
  4. В отверстия вводят зачищенные концы проводов, половинки совмещают. Провода должны погрузиться в состав.
  5. Части картофеля закрепляют зубочистками. Через несколько минут кабели замыкают, высекая искру для разведения огня.

Пошаговая инструкция по изготовлению батарейки

Элементы питания цилиндрической формы высотой 50 мм легко изготавливаются в домашних условиях.

Необходимые материалы и инструменты

Перед началом опыта подготавливают такие материалы и инструменты:

  • гофрированный картон;
  • плоские шайбы из меди диаметром 1 см — 12 шт.;
  • плоские шайбы из цинка диаметром 1 см — 15 шт.;
  • очищенная вода;
  • термоусадочная трубка;
  • уксусная кислота 70%;
  • поваренная соль;
  • паяльник;
  • емкости для приготовления растворов;
  • мультиметр;
  • наждачная бумага.

Гофрированный картон является одним из материалов для создания батареек своими руками.

Зачистка шайб

В основе самодельного элемента питания лежит 11 медно-цинковых шайб, выдающих напряжение в 0,15 В. Детали должны участвовать в химических реакциях, поэтому их очищают наждачной бумагой. В результате получают ровную блестящую поверхность.

Подготовка электролита

Металлы создают электрический ток, однако для его проведения нужна среда. Электролит изготавливают из 120 мл воды, 4 ст. л. соли и 30 мл уксусной кислоты. Ингредиенты перемешивают и настаивают в течение часа.

Работа с картоном

Для формирования нужного расстояния между шайбами выкладывают кружки, вырезанные из гофрокартона. После нарезания материал пропитывают подготовленным на прошлом этапе раствором.

Растягивание трубки

Перед размещением медно-цинковых шайб трубке придают нужный диаметр. С помощью иглогубцев изделие растягивают на 10% от изначального размера.

Тестирование устройства

На медную шайбу накладывают пропитанный электролитом картон. Мультиметр переводят в режим постоянного напряжения. Черный провод подсоединяют к медной детали, красный — к цинковой. На экране прибора должно появиться значение 0,05-0,15 В. Этого достаточно для создании элемента питания из 11 токопроводящих компонентов.

Итоговая сборка батарейки

Элементы укладывают с соблюдением последовательности: медь — цинк — кусок картона. Каждую деталь выставляют перпендикулярно оси трубки. Для удобства шайбы вдавливают тонким стержнем. Установив последнюю деталь, самодельную батарейку сравнивают с заводской. При необходимости вводят дополнительную шайбу из цинка. Трубку прогревают, создавая подобие батарейки. Излишки удаляют.

Монтаж контактов

Прогретым паяльником приваривают к концам полученной конструкции точки из припоя. При установке в гнездо напаянные детали должны касаться контактов держателя батареи.

Зачем собирать самому? Да затем, что аккумуляторные батареи — это та область, где готовый продукт — всегда лажа. Они всегда неоправдано дорогие. Всегда не достать нужного размера, который, разумеется, уникален для каждого устройства. Всегда нет нужной емкости, а есть только те, которые расчитаны на беготню от розетки к розетке в пределах города.

Особенно громко ругать производителей начинаешь тогда, когда попадаешь в форс-мажорную ситуацию. Остаешься без связи, потому что на морозе сдох коммуникатор. Не можешь снять удачный момент, потому что кончился родной аккумулятор на камере, а запасной от фирмы стоит $50. Или сидишь и скучаешь, потому что ноутбука хватило на час.

А вот сами вы можете собрать батарею, которая будет ограничена только двумя параметрами: ценой за ватт-час и энергоплотностью. Все остальные характеристики вы будете выбирать сами.

Статья написана для дилетантов и от дилетанта.

Только одно «но». Эта статья НЕ про батареи мощнее нескольких киловатт-часов.

Просто потому, что у меня не было никакого опыта использования таких батарей. Я не собирал электромобили и не делал системы автономного электроснабжения для дома. Принципы создания таких батарей совпадают с обычными, так что вам не помешает прочитать и эту статью, но оборудование используется совершенно разное. Так что за информацией обязательно идите на форум «электротранспорта.ру» или ForumHouse.ru.

Теория на пальцах

Элемент, ячейка, «банка», «батарейка» — то, что накапливает и отдает энергию. От аккумуляторных элементов зависят все характеристики батареи.

Батарея — это уже набор из многих элементов. Несколько ячеек соединяют в батарею, когда характеристик одной ячейки мало. Если соединить последовательно — растет напряжение. Если параллельно — увеличивается емкость батареи. Может включать в себя не только банки, но и всякую там управляющую электронику.

Напряжение — это то, с какой силой батарея может ударить током в потребителя. Является лишь характеристикой аккумулятора, от потребителя не зависит.7 Измеряется в вольтах (V).

Сила тока — чем она больше, тем больше жрет потребитель электричества. Измеряется в амперах (A).

Емкость — характеристика аккумулятора, измеряется в ампер-часах (Ah). К примеру, емкость в 2Ah означает, что аккумулятор может отдавать ток в 1A два часа и в 2A — один час.

Емкость аккумулятора также зависит от разрядного тока. Обычно чем он больше, тем емкость меньше. Производители аккумуляторов обычно указывают емкость, полученную при разряде каким-нибудь мизерным током в 100mA.

Справа показаны характеристики Li-ion-аккумулятора, который разряжают при разной силе тока. Чем ток выше, тем кривая разряда ниже.

C — буква латинского алфавита, которой измеряют отношение силы тока к емкости аккумулятора, то есть во сколько раз ток превышает емкость. Если аккумулятор имеет емкость 2Ah и разряжается при токе в 4A, то можно сказать, что он разряжается при токе в 2C. Все дело в том, что чем больше емкость аккумулятора, тем проще ему отдавать ток, и поэтому такой характеристикой пользоваться удобнее, чем просто амперами.

Энергия — та характеристика, которая позволяет сравнивать аккумуляторы с разным напряжением. Измеряется в ватт-часах и грубо вычисляется путем умножения напряжения на аккумуляторе на его емкость. Численно равна площади фигуры под кривой разряда.

Попугаи емкости и ватт-часы энергии

Предположим, у нас есть две батарейки одинаковой емкости — 2200mAh. Но одна из них — литий-ионная, а другая — никель-металлгидридная.

Вопрос: означает ли это, что в обоих аккумуляторах одинаковое количество энергии? Будет ли одно и то же устройство работать от обоих банок одинаковое время?

vs

На самом деле, глядя лишь на характеристику емкости, нельзя сравнивать энергию, которую может накопить и отдать аккумулятор. Для этого нужно знать номинальное напряжение на нем.

Грубо прикинуть количество энергии в ватт-часах можно, умножив номинальное напряжение аккумулятора на его емкость. И у нас получится:

  • Для NiMH: 1.2 вольт * 2.2 ампер-часа = 2.64 ватт-часа
  • Для Li-ion: 3.7 вольт * 2.2 ампер-часа = 8.14 ватт-часа

…что энергия Li-ion-аккумулятора той же емкости — в 3 раза больше, чем NiMH.

Но это всего лишь грубая «прикидка». Так, напряжение в 1.2 вольта на NiMH-элементе — это максимальное напряжение, соответствующее полному заряду аккумулятора. При разряде оно будет только падать, и реальная энергия будет немного меньше 2.64 ватт-часов. Тем не менее, именно такой способ расчета энергии аккумулятора мы будем использовать для сравнения их характеристик.

Типы аккумуляторов

тип ↓ NiMH ↓ Li-ion ↓ Li-polymer ↓ LiFePO4 ↓ Lead-Acid
номинальное напряжение на 1 ячейку 1.2V 3.7V 3.3V 2.105V
диапазон напряжений 0—1.2V 2.5—4.2V 2.0—3.65V 1.75—2.1V
число циклов заряд/разряд до потери 20% емкости 500—1500 1000 2000—80002 200—800
срок хранения до потери 20% емкости до 2 лет5 ~1.5 года 5—10 лет3
время простого заряда до 16 часов 1—2 часа 45 минут3 6-10 часов
время быстрого заряда 1—2 часа 45 минут 15 минут6 15 минут3 1-2 часа4
↓ энергоплотность, ватт-часов на кг 80 200 150 100 40
↓ цена за ватт-час $0.5—$1.3 $0.5—$0.7 от $0.3 $0.5—$2.2 $0.1—$0.3

NiMH — никель-металл-гидридные

Аккумуляторы этого типа морально устарели и добавлены для сравнения. Но иногда есть смысл подумать об их покупке — например, когда нужно сделать замену для сдохшей NiCd- или NiMH-батареи. Именно такие ставят в дешевые радиоуправляемые модели.

− Капризны в зарядке, требуют для быстрого заряда сложных устройств.
− Теряют заряд со временем. LSD-аккумуляторы (Long Self Discharge) этого недостатка лишены.
− Обладают «эффектом памяти», то есть временно теряют часть емкости при частичных разрядах. Любят только полные разряды. LSD-аккумуляторы также лишены этого недостатка.
− Имеют низкую энергоплотность.
+ Недо- и перезаряд им вреден, но не опасен, так что из этих банок можно составлять батарею просто так, без защитной электроники.

Наиболее популярный типоразмер для этих «банок» — обычный AA, то есть с пальчиковую батарейку.

Li-ion — литий-ионные

+ Обладают самой высокой энергоплотностью.

− Быстро разряжаются при использовании на морозе.

Вы, может быть, испытывали это вредное свойство, если пользовались мобильным телефоном зимой на улице. Батарея волшебным образом разряжается, и вы остаетесь без связи.

− Портятся при разряде ниже 2.5V.
− Взрывоопасны при перезаряде выше 4.2V.

Именно поэтому многие Li-ion-банки имеют под корпусом специальную плату, которая отключает ток при напряжении ниже 2.5V или выше 4.2V. Такие батарейки имеют слово «protected» («защищенные») в названии. Незащищенные же банки (unprotected) без специальной платы использовать в батарее нельзя. Подробнее о защите Li-ion-батарей и о их балансировке смотрите ниже.

− Теряют емкость со временем, даже от простого лежания на полке.
− Особенно быстро теряют емкость при высокой температуре.

Именно поэтому так быстро приходят в негодность батареи ноутбуков. Располагаются они близко к центральному процессору и видеокарте, которые сильно греются, да еще и с постоянным 100%-ным зарядом — все условия для того, чтобы быстро умереть. Вот такие данные приводит battery university:

температура при хранении с зарядом в 40% при хранении с полным (100%) зарядом
0°C теряет 2% за год теряет 6% за год
25°C теряет 4% за год теряет 20% за год
40°C теряет 15% за год теряет 35% за год
60°C теряет 25% за год теряет 40% за 3 месяца

Популярный типоразмер для литий-ионных «банок» — 18650 (18мм в ширину и 65 в длину). Именно такие используются в батареях ноутбуков. Возможно, вы их никогда не видели за пластмассовым корпусом батареи, но иногда их можно там нащупать. Такие же используются в спортивном электромобиле Tesla Roadster.

Li-polymer — литий-полимерные

+ Полностью совместимы с Li-ion.
+ В отличие от Li-ion, могут отдавать сильные токи — 10—40С.
+ Могут быть какой угодно толщины и формы. Подходят для питания совсем миниатюрных устройств, вроде шпионских штучек.
+ Продаются, как правило, в уже собранной батарее, с защитными платами и шлейфами для балансировки — удобно!
− Еще более взрыво- и пожароопасны.
− Еще хуже работают на морозе. Посмотрите, например, на такой график разряда:

LiFePO4 — литий-железо-фосфатные

Дальнейшая эволюция литиевых батарей. Аккумуляторы будущего. В отличие от Li-ion, они:

+ не боятся мороза;
+ не пожароопасны;
+ отдают токи до 50C;
+ могут быть заряжены сильным током за 15 минут;
+ имеют огромное число циклов заряд-разряд (2000-8000 до потери 20% емкости2);
+ практически не подвержены потере емкости при хранении3.

Недостатки по сравнению Li-ion:

− стоят дороже и имеют меньшую емкость;
− имеют меньшую энергоемкость;
− не совместимы с привычными Li-ion-элементами из-за другого диапазона напряжений — 2—3.65V.

− И так же, как Li-ion, требуют соблюдения своего диапазона напряжений — 2—3.65V.

Наиболее уважаемая компания на рынке LiFePO4 батареек — A123 Systems. Она же и разработала эту технологию.

Популярный типоразмер для «банок» — 26650 (26мм в ширину и 65 в длину) — был введен с подачи той же A123 Systems.

LiFeYPO4 — литий-железо-иттрий-фосфатные

Разновидность литиевых аккумуляторов, о которой мне ничего не известно, кроме того, что добавление иттрия увеличивает число циклов заряд-разряд. Ну, поживем — увидим.

Lead-Acid — свинцово-кислотные

− Обладают самой низкой энергоплотностью.
− Медленно заряжаются — до нескольких часов!
− На высоких токах (по их меркам — это то, что выше 0.1C) могут не отдать и половины емкости батареи.
− Очень чувствительны к температурам.
− Имеют малое число циклов заряд-разряд — от 200 при жестком обращении до 800 при щадящем.
− В случае обслуживаемого аккумулятора — требует ухода.
+ Чертовски дешевы!

Хотелось бы упомянуть здесь старые-добрые свинцово-кислотные аккумуляторы. Потому что у каждого читателя наверняка возникнет вопрос — а на кой черт все это надо, когда в любом магазине автозапчастей можно купить ящик на 12 вольт? Почему мы не будем их здесь рассматривать?

  • Во-первых потому, что свинцово-кислотные аккумуляторы продаются уже собранными в батарею на 6—12V, что никак не сходится с названием этой статьи.
  • Во-вторых, свинцово-кислотные батареи — настолько обширная тема, что достойна еще парочки статей.
  • В-третьих, я считаю их слишком тяжелыми для разных интересных вещей.

Все это не отменяет того, что свинцово-кислотные аккумуляторы — отличная штука, когда нужна дешевая энергия. Смотрите, например, ForumHouse.ru, раздел «автономный дом».

Сравнение

В интернете много таблиц, сравнивающих характеристики разных типов аккумуляторов. И у всех таких таблиц один и тот же недостаток — там сравниваются сферические кони в вакууме. Поэтому я составил свою, с конкретными примерами:

тип пример ватт-часов на: $ за ватт-час емкости центов за ватт-час энергии
кг литр
NiMH Turnigy AA LSD 2550mAh с хоббикинга, по цене без доставки 99 370 0.77 0.148 (500 циклов)
Eneloop AA LSD 2000mAh с ебея 89 309 1.24 0.076 (1500 циклов)
Li-ion TrustFire защищенные 18650 1900mAh с дилэкстрима 132 425 0.67 0.067 (1000 циклов)
TrustFire незащищенные 18650 1750mAh с дилэкстрима 145 391 0.51 0.051 (1000 циклов)
Panasonic незащищенные 18650 2200mAh с дилэкстрима 360 675 0.79 0.079 (1000 циклов)
Panasonic незащищенные NCR18650 3100mAh с дилэкстрима 251 479 0.84 0.084 (1000 циклов)
LiPo батарея с хоббикинга на 14.8V 5Ah, по цене без доставки 140 269 0.30 0.030 (1000 циклов)
LiFePO4 безымянные 18650 LiFePO4 1350mAh с дилэкстрима 111 269 1.11 0.045 (2000 циклов)
A123 18650 с хоббикинга, по цене без доставки 66 219 2.22 0.111 (2000 циклов)
0.027 (8000 циклов)
A123 ANR26650M1A с ебея 104 220 1.30 0.065 (2000 циклов)
0.016 (8000 циклов)2
«банка» на 8Ah c ev-power.eu, с 20% VAT 98 209 0.65 0.032 (2000 циклов)
большая «банка» на 20Ah, оттуда же, с 20% VAT 70 141 0.52 0.026 (2000 циклов)
китайский «аккумулятор» на 36 мегаватт-часов 0.07 ?
LiFeYPO4 Winston (Thunder Sky) на 100Ah с ебея 91 ? 0.42 0.014 (3000 циклов)
Lead-Acid случайная необслуживаемая батарея на 12V/17Ah 40 88 0.23 0.046 (500 циклов)
случайный автомобильный аккумулятор на 12V/50Ah 46 91 0.13 0.026 (500 циклов)

Я, например, сделал такие выводы:

  • За LiFePO4 будущее. В долгосрочной перспективе они выигрывают даже у свинцово-кислотных аккумуляторов по цене. Ну а с плюсами железо-фосфата и минусами свинца — тем более. Это единственное, из чего можно собирать электротранспорт. И единственное, что можно выволочь на мороз.
  • Самая высокая энергоплотность — у фирменных Li-ion-аккумуляторов. Если их придется тащить на себе, то это самый разумный выбор.
  • Иногда имеет смысл взять готовую литий-полимерную батарею и не париться.

Соединение элементов в батарею

Последовательное соединение

Это когда положительный (+) полюс каждого элемента соединяется с отрицательным (−) полюсом следующего:

Напряжения элементов в этом случае складываются, а емкость остается той же.

Последовательно соединенные элементы нуждаются в балансировке.

Дело в том, что даже банки из одной партии имеют немного разные характеристики. И заряжаются они с разной скоростью.

Возьмем батарею из трех последовательно соединенных элементов. Напряжение на полностью заряженном элементе — 4.2V. Значит, полностью заряженная батарея должна иметь напряжение в 12.6 вольт. Какой-то из элементов — например, посередине — может зарядиться быстрее, и к напряжению в 12.2V у нас будет такая картина:

Если продолжить зарядку, то к напряжению в 12.6V аккумулятор посередине перезарядится:

В итоге — возгорание элемента и мучительная смерть от удушья. Дабы такого не происходило — применяют балансиры, которые берут часть тока на себя, если напряжение на отдельном элементе подходит к критическому:

И в итоге все элементы будут заряжены полностью:

Хорошее решение для балансировки батарей — это зарядники, которые используют любители радиоуправляемых моделей, или Hobby Charger’ы. Самые популярные из них — iMAX B6 и Turnigy Accucel-6. Такие зарядят вам какой угодно тип батареи, расскажут о ее реальной емкости, ну и вообще модная тема.

Схема распайки шлейфа на балансировщик в случае 4-х последовательно соединенных элементов выглядит так:

Такие шлейфы называются JST-XH и различаются по количеству последовательно соединенных элементов. Например, JST-XH 4S — это для четырех, как на картинке. Набрать таких шлейфов можно на ибее.

Параллельное соединение

Это когда положительные (+) полюсы соединяются с положительными, а отрицательные (−) — с отрицательными:

Когда элементы соединяются параллельно, то их напряжение остается прежним, а емкости — складываются. Получается одна большая батарейка.

Балансировка в случае чистого параллельного соединения не требуется. Однако если в батарее есть и последовательные соединения — как в этой схеме 4S2P — то было бы неплохо припаять балансировочный шлейф:

О пайке литиевых элементов

Паять литиевые аккумуляторы нельзя. От нагрева паяльником они испортятся.

С другой стороны, для точной балансировки пайка рекомендуется, так как лишнее сопротивление может исказить получаемые зарядным устройством данные о напряжении.

Так что если очень хочется, то можно. Но в этом случае брать лучше «банки» с клеммами, и прикасаться паяльником не дольше пары секунд.

Беда.

Если вы все же нашли в себе смелость спаять банки в батарею, то прочитайте неофициальное руководство на английском от Hyperion HK Ltd. по пайке батареек от A123. Там подробно, с иллюстрациями, описывается этот процесс.

Если нет, то давайте рассмотрим альтернативные варианты.

Можно использовать в качестве контактов редкоземельные магниты. Они очень сильные — друг от друга не отдерешь. Снаружи покрыты никелем или цинком, которые не окисляются. Контакт с банкой обеспечивают прекрасный. Для полного счастья к ним можно припаять провода, но делать это очень осторожно: температура Кюри для них — при которой магниты превращаются в тыкву — около 300 градусов. Использовать можно только легкоплавкий припой и паяльник с термостабилизацией — вроде такого.

Или купить специальную держалку, как для обычных AA/AAA-батареек.1 Большой плюс такого решения в том, что батарейки не будут припаяны намертво, и на место дохлых банок можно вставлять запасные заряженные. И не надо покупать дорогие зарядники с балансировщиками — можно заряжать батарейки по 2 штуки зарядным устройством за 150 рублей.

На ебее можно найти вот такую готовую чудо-держалку батареек со встроенной защитой Li-ion-элементов. И не надо ничего паять — просто вставил незащищенные Li-ion-батарейки и поехал.

Защита банок от переразряда и перезаряда

Как я уже говорил, литиевые элементы не простят вам ни того, ни другого.

Самый простой способ уйти от этой проблемы — использовать защищенные (protected) батарейки. Именно такие покупают для всяких светодиодных фонарей. Защищенные батарейки имеют внутри корпуса вот такую маленькую платку:

Другой вариант — поставить одну большую плату на всю батарею. Например, такую. Вот ее схема подключения в конфигурации 4S2P — 4 последовательно соединенные батареи по 2 аккумулятора параллели:

Где P+ и P- — клеммы к заряднику или потребителю.

Не забывайте, что LiFePO4 не совместимы с обычными Li-ion-элементами, и для них нужны специальные защитные платы.

Широтно-импульсные модуляторы, или DC-DC-преобразователи

Это такие устройства, которые будут из того напряжения, что выдает вам аккумулятор, делать то, что вам нужно. Потому что часто от того напряжения, что выдает батарея, устройство либо сгорит, либо не заработает, либо первое при полностью заряженной батарее и последнее при разряженной.

Спаять такое нехитрое устройство можно и самому. Вот инструкция для новичков от DI HALT’а. Если вам лень, то добро пожаловать на ebay.

Такие преобразователи делятся на повышающие напряжение и понижающие. Обычно предпочитают использовать последние. Вот хороший экземпляр с регулировкой выходного напряжения — за $1.74. Существуют также разновидности с ограничением силы тока на выходе. Такие нужны, например, чтобы заряжать другой аккумулятор, или чтобы питать светодиод. Вот пример такого за $3.08.

Как и любое устройство, DC-DC-преобразователи имеют свой допустимый диапазон напряжений и силы тока. Заранее рассчитайте, сколько потребуется для вашего потребителя. В случае слишком больших токов на преобразователь нужно поставить охлаждение, а то и вовсе заменить на вариант помощнее.

Ремонт батареи ноутбука

Нет смысла покупать новую батарею для ноутбука, когда можно вдвое-втрое дешевле купить литий-ионных «банок» и заменить ими старые. Вот процесс ремонта на известном видео:

Остается только выделить несколько вещей.

  • Li-ion-аккумуляторы боятся высоких температур, а особенно — паяльника. Рекомендуется для пайки выбирать только «банки» с клеммами и не держать паяльник дольше пары секунд. Если вы будете неаккуратны, то вы можете испортить аккумулятор!
  • Li-ion-аккумуляторы взрыво- и пожароопасны в случае перезаряда. Дважды проверьте правильность подключения ваших «банок».
  • Некоторые производители ноутбуков вставляют в свои батареи хитрую электронику, которая по сути является защитой от ремонта. Сначала прочитайте в интернете об опыте ремонта батарей для ноутбуков из вашей серии. Возможно, что ничего не выйдет. Все претензии в этом случае — к производителю.

Автономная зарядка мобильников и всего на свете

Такая штука пригодится в поездках, походах — везде, где есть проблемы с розетками. Для этого вам понадобятся:

Также вам будет нужен мультиметр (тестер), который выдерживает ток до 10A.

  1. Сначала нужно припаять провода от держалки батареек к ШИМу: черный к IN-, красный к IN+.
  2. Затем нужно будет настроить ШИМ. Если этого не сделать — этот прибор может сжечь ваш телефон!
    1. Переключите мультиметр в режим измерения постоянного напряжения и дотроньтесь щупами до контактов OUT+ и OUT-. Мультиметр покажет напряжение холостого хода. Возьмите мелкую отвертку и покрутите первый потенциометр (крутилка такая, на фотографии он слева) до тех пор, пока мультиметр не покажет напряжение в 5 вольт.
    2. Затем переключите мультиметр в режим измерения постоянного тока. Так же дотроньтесь щупами до OUT+ и OUT-. Отрегулируйте силу тока короткого замыкания потенциометром справа до 1 ампера.
    3. Потенциометр посередине обычно трогать не надо.
  3. Выньте батарейки из держалки.
  4. Присоедините USB-гнездо к ШИМу. Для этого отрежьте его от USB-удлиннителя и распорите отрезанный конец. Черную жилку вам необходимо припаять к контакту OUT-, красную — к OUT+, а зеленую, белую и экран трогать не нужно. Можно обрезать их к черту, если мешают. Лишь бы не контачили ни с чем.

Все. Теперь можно вставлять батарейки в держалку, веник со штекерами — в USB-гнездо и заряжать что угодно где угодно. Большой плюс этой схемы в том, что батарейки не прикручены намертво, и их можно заменять на запасные, когда они сдохнут.

Зарядить мобильник такой ерундой можно раз пять. Если вам требуется просто продолжительная работа мобильника, то можно вытащить из него аккумулятор — энергия в этом случае будет расходоваться эффективнее.

Аккумуляторная батарея для Raspberry Pi

Проверил рецепт. Не работает! Ждите дальнейших правок.

Эта плата просто просится, чтобы к ней прикрутили автономное питание. Она жрет от силы 3.5 ватта, так что одной Li-ion-батарейки ей хватит часа на два. К сожалению, увидеть в природе это чудо техники почти невозможно, так что мы будем лишь теоретизировать.

Нам нужно всего лишь подвести 5 вольт к плате и к ее USB-периферии. Потому что плата выдает только 100mA на USB-периферию. А без нее скучно. Периферией могут быть, например, wifi-адаптер и веб-камера.

3 защищенных Li-ion-батарейки $14.07 кусок MircoUSB-кабеля ?
держалка для батареек $1.45 простой широтно-импульсный модулятор $1.88
пара не очень нужных USB-кабелей для соединения платы с периферией, желательно коротких, тонких и без экрана ? сама плата, достать которую невозможно $25—35

Также понадобится мультиметр.

  1. Сначала нужно припаять провода от держалки батареек к ШИМу: черный к IN-, красный к IN+.
  2. Затем нужно будет настроить ШИМ. Если этого не сделать — вы можете спалить и свою плату, и ее периферию! Переключите мультиметр в режим измерения постоянного напряжения и дотроньтесь щупами до контактов OUT+ и OUT-. Мультиметр покажет напряжение холостого хода. Возьмите мелкую отвертку и покрутите потенциометр (крутилка такая) до тех пор, пока мультиметр не покажет напряжение в 5 вольт.
  3. Выньте батарейки из держалки.
  4. Обеспечьте питанием Raspberry Pi. Для этого распорите конец MicroUSB-штекера. Черную жилку вам необходимо припаять к контакту OUT-, красную — к OUT+, а зеленую, белую и экран трогать не нужно. Можно обрезать их к черту, если мешают. Лишь бы не контачили ни с чем.
  5. Добавьте питания периферии. Для этого возьмите какой-нибудь не очень нужный USB-кабель, которым вы собираетесь соединять устройство с платой. Аккуратно — очень аккуратно! — распорите оболочку и достаньте черную и красную жилки. Затем припаяйте их к ШИМу — черную к OUT-, красную к OUT+.

Вот и все. Затем вставляйте батарейки и в путь. По моим прикидкам, все должно работать и сгореть ничего не должно.

См. также

  • Старая статья — об аккумуляторных батарейках.
  • Каталог батареек на дилэкстриме.
  • Как правильно тренировать и калибровать батарею смартфона.
  • Форум «электротранспорт.ру». Даже если вас (как меня сейчас) не интересует сборка электромобилей, там можно узнать, например, где можно дешево взять крупную партию фирменных аккумуляторов.
  • ForumHouse.ru, раздел «автономный дом». Местные накопили много знаний по использованию свинцово-кислотных аккумуляторов.
  • Совершенно умилительная картина — человек долго разбирался в процессах в свинцово-кислотных аккумуляторах и начал выпускать собственные зарядные устройства. Есть еще его тред на электротранспорте.
  • Маленький контроллер для зарядки Li-Ion и Li-polymer аккумуляторов за 28 рублей.

Примечания

1 На buyincoins.com можно получить скидку в 5%, если при регистрации указать «apsheronets» как recommender’а.

2 Смотрите статью «о ресурсе LiFePO4-аккумуляторов A123 ANR26650M1».

Результаты теста A123 LiFePO4 ANR26650M1A, взято из State-of-Health Estimation of Li-ion Batteries: Cycle Life Test Methods by JENS GROOT. Вертикальная шкала — емкость, горизонтальная — количество циклов заряд-разряд.
Cycle A — симуляция гибридного городского автобуса: постоянное чередование заряда и разряда.
Cycle B — то же, но с другой моделью.
Cycle C — полный заряд и полный разряд при постоянном токе.
Cycle D — колебания заряда около 40% при постоянном токе.
Cycle E — длительный разряд, симуляция потребления автобуса среднего размера.

Таким образом, ресурс этой «банки» до потери 20% емкости:

  • при жестком обращении с полными разрядами — ~1800 циклов в случае быстрого разряда и ~2200 в случае длительного;
  • при щадящем обращении с частичными разрядами и зарядами — от 8000 циклов и выше.

3 Спецификация на A123 ANR26650M1.
В частности, показывает потерю емкости всего в 23% при хранении в течение 15 лет в полностью заряженном состоянии при температуре 60°C:

4 Из описания чудо-задрядного устройства для свинцовых аккумуляторов:

Процесс зарядки в «нормальном» (классическом) режиме выглядит примерно так: первые 4-6 часов идут основные циклы зарядки АКБ, а потом с разной частотой и периодичностью идет «адаптивная добивка» емкости АКБ, еще примерно 2-4 часа. При постановке «на ночь» в зарядку, как правило, к утру АКБ полностью заряжается до своей номинальной емкости.
В «адаптивном» (AUTO) режиме ЗУ может заряжать АКБ до 100% емкости от 50 минут до 2 часов. (сильно зависит от возможностей самой АКБ, и токов заряда, которые может принимать АКБ. Для быстрой зарядки АКБ токи могут достигать 0.8-1.5С)

5 С официального сайта:

6 Из описания батарейки на хоббикинге:


Некоторые открытия, например, получение пенициллина, произошли случайно. Для таких случаев даже есть слово — серендипити. Группа исследователей из калифорнийского университета в Ирвине неожиданно для себя выявила возможность создания аккумулятора, срок службы которого в разы превышает аналогичный показатель у существующих коммерческих литий-ионных аккумуляторных батарей. Даже после 200 000 циклов зарядки прототип потерял всего 5% от своей первоначальной емкости.
Получить уникальный результат учёным удалось в процессе разработки аккумулятора с твердым электролитом, более безопасным, чем современные аккумуляторы с жидким электролитом, которые плохо переносят нагревание и являются взрывоопасными. Созданный образец представляет собой золотые нанопровода, покрытые слоями диоксида марганца и геля из плексигласа, выступающего в качестве электролита. По мнению учёных, гелеобразный электролит играет защитную роль, придавая нанопроводникам толщиной с бактерию дополнительную прочность и эластичность.


Ресурс современных батарей рассчитан на 200 до 400 циклов перезаряда, в то время как опытный образец аккумулятора сумел сохранить почти изначальную емкость даже после 200 тыс. циклов заряда и разряда на протяжении трех месяцев испытаний. Перспектива использования такого аккумулятора безгранична — начиная от мобильных гаджетов и заканчивая работой в автомобилях и космических станциях. Однако, пока это только прототип и разговоры о коммерциализации разработки в ближайшее время не ведутся. К тому же, технология получается дорогой из-за использования золота, а сам опытный образец не является конечным продуктом, который можно было бы использовать уже на практике.

Современные батарейки имеют один важный недостаток — они недолговечны. Не спасают ситуацию и аккумуляторы, которые требуют постоянной подзарядки и спустя некоторое время начинают деградировать. Небольшой стартап HydraLight сообщил о создании устройства, который обладает бесконечным ресурсом, вырабатывая энергию из обычной солёной воды.

HydraCell представляет собой небольшой куб, к которому можно подключать различные гаджеты для зарядки. По сути — это «спящая» АКБ, которая начинает вырабатывать энергию после добавления в него 7,5-процентного раствора солёной воды. По словам создателей, устройство оказывает минимальное воздействие на окружающую среду. Так, оно изготовлено из переработанного пластика, а в ходе утилизации образует полностью биоразлагаемые отходы.

В описании генератора говорится, что от одной порции воды он способен зарядить до 10 смартфонов или обеспечить работу комплектного фонарика на протяжении 100 часов. В отличие от портативных аккумуляторов, он всегда готов к использованию и не требует подзарядки. Создатели отмечают, что прибор подходит для длительных путешествий и любителей активного отдыха вдалеке от цивилизации.

Для работы прибора можно использовать даже морскую воду. Жидкость выступает в роли электролита между специальными зарядными пластинами, которые при её добавлении начинают вырабатывать энергию.

В данный момент HydraCell представлен на платформе Kickstarter, где уже собрал порядка 100 тысяч долларов, превысив первоначальные планы в три раза. Первые поставки необычной АКБ начнутся в августе по цене от 54 долларов.

Оставьте комментарий