Микромоль

Содержание

Подробнее об освещенности

Трехваттный светодиодный фонарь

Общие сведения

Освещенность — это световая величина, которая определяет количество света, попадающего на определенную площадь поверхности тела. Она зависит от длины волны света, так как человеческий глаз воспринимает яркость световых волн разной длины, то есть разного цвета, по-разному. Освещенность вычисляют отдельно для волн разной длины, так как люди воспринимают свет с длиной волны в 550 нанометров (зеленый), и цвета, находящиеся рядом в спектре (желтый и оранжевый), как самые яркие. Свет, образуемый более длинными или короткими волнами (фиолетовый, синий, красный) воспринимается, как более темный. Часто освещенность связывают с понятием яркости.

Освещенность обратно пропорциональна площади, на которую падает свет. То есть, при освещении поверхности одной и той же лампой, освещенность большей площади будет меньше, чем освещенность меньшей площади.

Разница между яркостью и освещенностью

ЯркостьОсвещенность

В русском языке слово «яркость» имеет два значения. Яркость может означать физическую величину, то есть характеристику светящихся тел, равную отношению силы света в определенном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. Также она может определять более субъективное понятие об общей яркости, которое зависит от многих факторов, например особенностей глаз того, кто смотрит на этот свет, или количества света в окружающей среде. Чем меньше света вокруг, тем ярче кажется источник света. Чтобы не путать эти два понятия с освещенностью стоит запомнить, что:

яркость характеризует свет, отраженный от поверхности светящегося тела или посылаемый этой поверхностью;

освещенность характеризует падающий на освещаемую поверхность свет.

В астрономии яркость характеризует как излучающую (звезды), так и отражающую (планеты) способность поверхности небесных тел и измеряется по фотометрической шкале звездных яркостей. Причем, чем ярче звезда, тем меньше величина ее фотометрической яркости. Самые яркие звезды имеют отрицательную величину звездной яркости.

Единицы измерения

Освещенность чаще всего измеряют в единицах СИ люксах. Один люкс равен одному люмену на квадратный метр. Те, кто предпочитают метрическим единицам имперские, используют для измерения освещенности фут-канделу. Часто ее применяют в фотографии и кино, а также в некоторых других областях. Фут в названии используется потому, что одна фут-кандела обозначает освещенность одной канделой поверхности в один квадратный фут, которую измеряют на расстоянии одного фута (чуть больше 30 см).

Экспонометр «Сверловск-4», сделанный в СССР в 80-x

Фотометр

Фотометр — это устройство, которое измеряет освещенность. Обычно свет поступает на фотодетектор, преобразуется в электрический сигнал и измеряется. Иногда встречаются фотометры, которые работают по другому принципу. Большая часть фотометров показывают информацию об освещенности в люксах, хотя иногда используются и другие единицы. Фотометры, называемые экспонометрами, помогают фотографам и операторам определить выдержку и диафрагму. Кроме этого фотометры используют для определения безопасной освещенности на рабочем месте, в растениеводстве, в музеях, и во многих других отраслях, где необходимо знать и поддерживать определенную освещенность.

Освещенность и безопасность на рабочем месте

Работа в темном помещении грозит ухудшением зрения, депрессией и другими физиологическими и психологическими проблемами. Именно поэтому многие правила охраны труда включают требования о минимальной безопасной освещенности рабочего места. Измерения обычно проводят фотометром, который выдает конечный результат в зависимости от площади распространения света. Это необходимо для того, чтобы обеспечить достаточную освещенность во всем помещении.

Освещенность в фото- и видеосъемке

Видеосъемка

В большинстве современных камер имеются встроенные экспонометры, упрощающие работу фотографа или оператора. Экспонометр необходим для того, чтобы фотограф или оператор могли определить, сколько света нужно пропустить на пленку или фотоматрицу в зависимости от освещенности снимаемого объекта. Освещенность в люксах преобразуется экспонометром в возможные комбинации выдержки и диафрагмы, которые потом выбираются вручную или автоматически, в зависимости от того, как настроена камера. Обычно предлагаемые комбинации зависят от настроек в камере, а также от того, что фотограф или оператор хочет изобразить. В студии и на съемочной площадке часто используют внешний или встроенный в камеру экспонометр, чтобы определить, достаточно ли освещения обеспечивают используемые источники света.

Для получения хороших фотографий или видеоматериала в условиях плохого освещения на пленку или фотоматрицу должно попасть достаточное количество света. Этого не трудно добиться с помощью фотоаппарата — нужно только установить правильную экспозицию. С видеокамерами дело обстоит сложнее. Для видеосъемки высокого качества обычно нужно устанавливать дополнительное освещение, иначе видео будет слишком темным или с сильным цифровым шумом. Это не всегда возможно. Некоторые видеокамеры специально разрабатывают для съемки в условиях слабой освещенности.

Камеры, предназначенные для съемки в условиях слабой освещенности

Камера и объектив для сотового телефона

Есть два вида камер для съемок в условиях слабой освещенности: в одних используется оптика более высокого уровня, а в других — более совершенная электроника. Оптика пропускает больше света в объектив, а электроника лучше обрабатывает даже тот малый свет, что попадает в камеру. Обычно именно с электроникой связаны проблемы и побочные эффекты, описанные ниже. Светосильная оптика позволяет снять видео более высокого качества, но ее недостатки — дополнительный вес из-за большого количества стекла и значительно более высокая цена.

Объектив и фотоматрица типа ПЗС 1/1,7 дюймов (7,60 x 5,70 мм) для компактной камеры

Кроме этого, на качество съемки влияет установленная в видео- и фотокамерах одноматричная или трехматричная фотоматрица. В трехматричной матрице весь поступающий свет делится с помощью призмы на три цвета — красный, зеленый и синий. Качество изображения в темных условиях лучше в трехматричных камерах, чем в одноматричных, так как при прохождении через призму рассеивается меньше света, чем при его обработке фильтром в одноматричной камере.

Существует два основных вида фотоматриц — на приборах с зарядовой связью (ПЗС) и выполненные на основе КМОП-технологии (комплементарный металлооксидный полупроводник). В первом обычно установлен датчик, на который поступает свет, и процессор, который обрабатывает изображение. В КМОП-матрицах датчик и процессор обычно объединены. В условиях недостаточного освещения камеры с ПЗС-матрицами обычно дают изображение лучшего качества, а достоинства КМОП-матриц в том, что они дешевле и потребляют меньше энергии.

Полноформатная фотоматрица типа КМОП размером 24 x 36 мм для профессиональной цифровой зеркальной камеры Canon 5D Mark II

Размер фотоматрицы также влияет на качество изображения. Если съемка происходит с малым количеством света, то чем больше матрица — тем лучше качество изображения, а чем меньше матрица — тем больше проблем с изображением — на нем появляется цифровой шум. Большие матрицы устанавливают в более дорогих камерах, и для них необходима более мощная (и, как следствие — тяжелая) оптика. Фотокамеры с такими матрицами позволяют снимать профессиональное видео. Например, в последнее время появился ряд фильмов полностью снятых на такие камеры как Canon 5D Mark II или Mark III, у которых размер матрицы — 24 x 36 мм.

Производители обычно указывают, в каких минимальных условиях может работать камера, например при освещенности от 2 люкс. Эта информация не стандартизирована, то есть производитель решает сам, какое видео считать качественным. Иногда две камеры с одним и тем же показателем минимальной освещенности дают разное качество съемки. Альянс отраслей электронной промышленности EIA (от английского Electronic Industries Association) в США предложил стандартизированную систему определения светочувствительности камер, но пока он используется только некоторыми производителями и не принят повсеместно. Поэтому часто, чтобы сравнить две камеры с одинаковыми световыми характеристиками, нужно испробовать их в действии.

На данный момент любая камера, даже рассчитанная на работу в условиях низкой освещенности, может давать картинку низкого качества, с высокой зернистостью и послесвечением. Чтобы решить некоторые из этих проблем возможно предпринять следующие шаги:

Если света недостаточно и объект статичный, лучшие результаты получаются, если установить камеру на штатив

  • Снимать на штативе;
  • Работать в ручном режиме;
  • Не использовать режим переменного фокусного расстояния, а вместо этого перенести камеру как можно ближе к объекту съемки;
  • Не использовать автоматическую фокусировку и автоматический выбор ISO — при большей величине ISO увеличивается шум;
  • Снимать с выдержкой в 1/30;
  • Использовать рассеянный свет;
  • Если нет возможности установить дополнительное освещение, то использовать весь возможный свет вокруг, например уличные фонари и лунный свет.

Несмотря на отсутствие стандартизации о чувствительности камер к освещенности, для ночной съемки все равно лучше выбрать камеру, на которой указано, что она работает при 2 люкс или ниже. Также следует помнить, что даже если камера действительно хорошо снимает в темных условиях, ее чувствительность к освещенности, указанная в люксах — чувствительность к свету, направленному на объект, но камера на самом деле получает свет, отраженный от объекта. При отражении часть света рассеивается, и чем дальше камера от объекта — тем меньше света попадает в объектив, что ухудшает качество съемки.

Экспозиционное число

Одна и та же фотография с разными экспозиционными числами

Экспозиционное число (англ. Exposure Value, EV) — целое число, характеризующее возможные комбинации выдержки и диафрагмы в фото, кино- или видеокамере. Все сочетания выдержки и диафрагмы, при которых на пленку или светочувствительную матрицу попадает одинаковое количество света, имеют одинаковое экспозиционное число.

Несколько комбинаций выдержки и диафрагмы в камере при одном и том же экспозиционном числе позволяют получить примерно одинаковое по плотности изображение. Однако изображения при этом будут различными. Это связано с тем, что при разных значениях диафрагмы глубина резко изображаемого пространства будет различной; при разных значениях выдержки изображение на пленке или матрице будет находиться разное время, в результате чего оно будет в разной степени смазано или совсем не смазано. Например, сочетания f/22 — 1/30 и f/2.8 — 1/2000 характеризуются одним и тем же экспозиционным числом, но первое изображение будет иметь большую глубину резкости и может оказаться смазанным, а второе будет иметь малую глубину резкости и, вполне возможно, совсем не будет смазанным.

На левом снимке за счет длинной выдержки подчеркнуто движение воды, в то время как на правом снимке за счет относительно короткой выдержки движение не так заметно и вода изображена резко

Бóльшие значения EV используются, если объект съемки лучше освещен. Например, экспозиционное число (при светочувствительности ISO 100) EV100 = 13 можно использовать при съемке ландшафта, если на небе имеется облачность, а EV100 = –4 годится для съемки яркого полярного сияния.

По определению,

EV = log2 (N2/t)

или

2EV = N2/t, (1)

    где

  • N — диафрагменное число (например: 2; 2,8; 4; 5,6, и т. д.)
  • t — выдержка в секундах (например: 30, 4, 2, 1, 1/2, 1/4, 1/30, 1/100, и т. д.)

Зависимость глубины резкости от величины диафрагмы при одном и том же экспозиционном числе

Например, для комбинации f/2 и 1/30, экспозиционное число

EV = log2(22/(1/30)) = log2(22 × 30) = 6.9 ≈ 7.

Это число может быть использовано для съемки ночных сцен и освещенных витрин. Комбинация f/5.6 с выдержкой 1/250 дает экспозиционное число

EV = log2 (5.62/(1/250)) = log2 (5.62 × 250) = log2 (7840) = 12.93 ≈ 13,

которое можно использовать для съемки пейзажа с облачным небом и без теней.

Следует отметить, что аргумент логарифмической функции должен быть безразмерным. В определении экспозиционного числа EV игнорируется размерность знаменателя в формуле (1) и используется только численное значение выдержки в секундах.

Одинаковое экспозиционное число 12 установлено на пленочной камере Зенит-ЕТ и цифровой камере Canon 5D Mark II

Взаимосвязь экспозиционного числа с яркостью и освещенностью объекта съемки

Определение экспозиции по яркости света, отраженного от объекта съемки

Определение экспозиции путем измерения люксметром отраженного от объекта съемки света

При использовании экспонометров или люксметров, измеряющих отраженный от объекта съемки свет, выдержка и диафрагма связаны с яркостью объекта съемки следующим соотношением:

N2/t = LS/K (2)

Здесь

  • N — диафрагменное число;
  • t — выдержка в секундах;
  • L — усредненная яркость сцены в канделах на квадратный метр (кд/м²);
  • S — арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • K — калибровочный коэффициент экспонометра или люксметра для отраженного света; Canon и Nikon используют K = 12.5.

Из уравнений (1) и (2) получаем экспозиционное число

EV = log2 (LS/K)

или

2EV = LS/K

При K = 12,5 и ISO 100, имеем следующее уравнение для яркости:

2EV = 100L/12.5 = 8L

L = 2EV/8 = 2EV/23 = 2EV–3.

Эта формула используется в конвертере для преобразования экспозиционного числа в кд/м² и наоборот.

Определение экспозиции по освещенности объекта съемки (падающий свет)

Определение экспозиции путем измерения люксметром света, падающего на объект съемки

При использовании экспонометров или люксметров, измеряющих падающий на объект съемки свет, выдержка и диафрагма связаны с освещенностью объекта съемки следующим соотношением:

N2/t = ES/C,

где

  • N — диафрагменное число;
  • t — выдержка в секундах;
  • E — усредненная освещенность сцены, измеренная в люксах;
  • S — арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • C — калибровочный коэффициент экспонометра или люксметра для отраженного света; обычно используется C = 250.

При C = 250 and ISO 100, получаем следующую зависимость экспозиционного числа от освещенности объекта съемки:

2EV = ES/C = 100/250 E = 0.4 × E

E = 2.5 × 2EV.

Эта формула используется в конвертере освещенности для преобразования экспозиционного числа в люксы и наоборот.

Следует отметить, что если посмотреть на таблицу соответствия экспозиционных чисел и яркости (для ISO 100 и K = 12.5) и освещенности (для ISO 100 и C = 250) объекта съемки, можно подумать, что она допускает прямое преобразование кд/м² в люксы и наоборот. Однако это не так, поскольку в люксах измеряется освещенность, то есть, количество света, падающее на поверхность, в то время как канделы на кв. метр используются для измерения яркости объекта, то есть, отраженного от поверхности объекта света. Количество отраженного света, то есть, яркость объекта, определяется свойствами поверхности объекта и ее текстурой. Например, поверхность, покрытая черным бархатом, может быть освещена очень ярким источником света, но при этом иметь очень низкую яркость. В то же время, белый автомобиль с глянцевой поверхностью может иметь большую, чем черный бархат, яркость при более слабом освещении. Фотографы знают, как трудно снять модель в черном бархатном платье на фоне белого автомобиля и наоборот, модель в белом свадебном платье на фоне черного автомобиля.

Пример условий освещения, при которых это экспозиционное число можно использовать

Конвертер яркости Конвертер освещённости Пример условий освещения, при которых это экспозиционное число можно использовать
EV кд/м² fL лк фут·кд
-4 0,008 0,0023 0,156 0,015 Яркое полярное сияние
-3 0,016 0,0046 0,313 0,029 Пейзаж при освещении лунным светом, полная луна
-2 0,031 0,0091 0,625 0,058 Пейзаж при освещении лунным светом, полная луна
-1 0,063 0,018 1,25 0,116 Пейзаж при освещении лунным светом, полная луна, легкая облачность
0 0,125 0,036 2,5 0,232 Плохо освещенное помещение
1 0,25 0,073 5 0,465 Здания вдали или пейзаж с силуэтами на фоне неба при слабом
2 0,5 0,146 10 0,929 Здания вдали при искусственном освещении
3 1 0,292 20 1,86 Архитектура при искусственном освещении
4 2 0,584 40 3,72 Рождественская елка или улицы, освещенные фонарями
5 4 1,17 80 7,43 Автомобили ночью
6 8 2,33 160 14,9 Витрины ночью
7 16 4,67 320 29,7 Ночные улицы
8 32 9,34 640 59,5 Ночные улицы с ярким искусственным освещением
9 64 18,7 1280 119 Пожары, костры, спорт при искусственном освещении
10 128 37,4 2560 238 Неоновая реклама
11 256 74,7 5120 476 Пейзажи сразу после заката
12 512 149 10240 951 Пейзажи во время заката или при сильной сплошной облачности
13 1024 299 20480 1903 Пейзажи перед закатом
14 2048 598 40960 3805 Пейзажи при солнечном свете и сильно загрязненной атмосфере (дымом пожаров или выхлопными газами)
15 4096 1195 81920 7611 Пейзажи при хорошем солнечном освещении
16 8192 2391 163840 15221 Снежные пейзажи или пустыня при солнечном освещении

Подробнее об экспозиционном числе.

Освещенность и музейные экспонаты

Статуя в Версальском дворце, Франция

Скорость, с которой ветшают, выцветают и иным образом портятся музейные экспонаты, зависит от их освещенности и от силы источников света. Сотрудники музеев измеряют освещенность экспонатов, чтобы убедиться, что на экспонаты попадает безопасное количество света, а также и для того, чтобы обеспечить достаточно света для посетителей, чтобы они могли хорошо рассмотреть экспонат. Освещенность можно измерить фотометром, но во многих случаях это бывает нелегко, так как он должен находиться как можно ближе к экспонату, а для этого часто необходимо убрать защитное стекло и выключить сигнализацию, а также получить на это разрешение. Чтобы облегчить задачу, работники музея часто пользуются фотоаппаратами как фотометрами. Конечно, это не замена точным измерениям в ситуации, где найдена проблема с количеством света, который попадает на экспонат. Но для того, чтобы проверить, нужна ли более серьезная проверка с фотометром, фотоаппарата вполне достаточно.

Экспозиция определяется фотоаппаратом на основе показаний об освещенности, и, зная экспозицию, можно найти освещенность, проделав ряд несложных вычислений. В этом случае сотрудники музеев пользуются либо формулой, либо таблицей с переводом экспозиции в единицы освещенности. Во время вычислений не стоит забывать, что камера поглощает часть света, и учитывать это в конечном результате.

Садоводы знают, что разные растения требуют разное количество света; для оценки освещенности растений можно использовать люксметры

Освещенность в других сферах деятельности

Садоводы и растениеводы знают, что растения нуждается в свете для фотосинтеза, и им известно, сколько света необходимо каждому растению. Они измеряют освещенность в теплицах, садах и огородах, чтобы убедиться в том, что каждое растение получает достаточное количество света. Некоторые используют для этого фотометры.

Литература

Что такое PAR?

PAR — фотосинтетически активное излучение. PAR-свет — это длина волны света в видимом диапазоне от 400 до 700 нанометров (нм), которая стимулирует фотосинтез. PAR является широко используемым (и часто неправильно) термином, связанным с освещением для садоводства. PAR не является измерением или «метрикой», как футы, дюймы или килограммы. Скорее, это определяет тип света, необходимый для поддержки фотосинтеза. Количество и спектральное качество света PAR являются важными показателями, на которые нужно обратить внимание. Датчики Uptek (Quantum подходит только для белых светодиодов) являются основным инструментом, используемым для количественной оценки интенсивности освещения в системах освещения для полноцветного освещения красного и синего цветов. Эти датчики работают с использованием оптического фильтра для создания равномерной чувствительности к свету PAR, и их можно использовать в сочетании с измерителем освещенности для измерения мгновенной интенсивности света или регистратором данных для измерения совокупной интенсивности света.

Что такое PPF?

PPF — фотосинтетический поток фотонов. PPF измеряет общее количество PAR, которое производится системой освещения каждую секунду. Это измерение проводится с использованием специализированного прибора, называемого интегрирующей сферой, который фиксирует и измеряет практически все фотоны, испускаемые системой освещения. Единица, используемая для выражения PPF — это микромоль в секунду (мкмоль / с). Вероятно, это второй по важности способ измерения системы освещения для садоводства, но по какой-либо причине большинство осветительных компаний не указывают этот показатель. Важно отметить, что PPF не сообщает вам, сколько измеренного света фактически попадает на растения, но является важным показателем, если вы хотите рассчитать, насколько эффективна система освещения при создании PAR.

Что такое PPFD?

PPFD — плотность фотосинтетического потока фотонов. PPFD измеряет количество PAR, которое фактически поступает к растению, или, как мог бы сказать ученый: «количество фотосинтетически активных фотонов, которые падают на данную поверхность каждую секунду». PPFD является «точечным» измерением определенного места на навесе вашего растения и измеряется в микромолях на квадратный метр в секунду (мкмоль / м2 / с). Если вы хотите узнать истинную интенсивность света лампы над обозначенной зоной выращивания (например, 4 ’x 4’), важно, чтобы было взято среднее значение нескольких измерений PPFD на определенной высоте. Светотехнические компании, которые публикуют PPFD только в центральной точке зоны покрытия, сильно переоценивают истинную интенсивность света светильника. Одно измерение мало о чем говорит, поскольку огни для садоводства, как правило, самые яркие в центре, а уровни освещения уменьшаются по мере того, как измерения проводятся по краям зоны покрытия. (производители освещения могут легко манипулировать данными PPFD. Чтобы обеспечить получение фактических значений PPFD в определенной зоне выращивания, производитель должен опубликовать следующие данные: расстояние измерения от источника света (вертикальное и горизонтальное), количество измерений включено в среднем, а отношение мин / макс). Solarlux всегда публикует среднее значение PPFD по определенной площади выращивания при рекомендуемой высоте установки для всех наших систем освещения.

Что такое эффективность фотонов?

Эффективность фотонов относится к тому, насколько эффективна система освещения для садоводства при преобразовании электрической энергии в фотоны PAR. Многие производители светильников для садоводства используют общую электрическую мощность или ватт на квадратный фут в качестве метрики для описания интенсивности света. Однако эти метрики действительно ничего вам не говорят, так как ватты — это измерение, описывающее электрический вход, а не световой выход. Если PPF света известен вместе с входной мощностью, вы можете рассчитать, насколько эффективна система освещения для садоводства при преобразовании электрической энергии в PAR. Напоминаем, что единица измерения для PPF равна мкмоль / с, а единица измерения ватт — это Джоуль в секунду (Дж / с), поэтому секунды в числителе и знаменателе аннулируются, и единица измерения становится мкмоль / Дж. Чем выше это число, тем эффективнее система освещения для преобразования электрической энергии в фотоны PAR.

НЕ ИСПОЛЬЗУЙТЕ ЭЛЕКТРИЧЕСКИЕ ВАТТЫ ДЛЯ СРАВНЕНИЯ СИСТЕМ ОСВЕЩЕНИЯ

В садоводстве для сравнения систем освещения, многие люди используют общую электрическую мощность, доллар / ватт или ватт / квадратный метр, но эти показатели бесполезны на 100% и, скорее всего, приведут к тому, что покупатель примет неудачное решение о покупке. Зачем? Просто. Электричество не выращивает растения. Кроме того, радиометрическая эффективность (сколько света излучает прибор на ватт электроэнергии) может варьироваться до 200% среди популярных светодиодных светильников на рынке сегодня. Следовательно, поскольку свет (не электричество) выращивает растения, вам нужно спросить, сколько света излучает светильник. Звучит просто, но 99,9% компаний, занимающихся освещением садоводства, не рекламируют этот показатель. Вместо этого они сосредотачиваются на электрических ваттах. Зачем? Потому что очень сложно разработать эффективную систему освещения (измеряется в мкмоль / Дж), которая обеспечивает высокий уровень освещения, но очень легко создать неэффективную систему освещения, которая потребляет много электроэнергии. Высокоэффективные светодиоды, блоки питания и оптика стоят дороже, чем менее эффективные компоненты, и многие производители используют компоненты более низкого качества для увеличения прибыли.

Помните … Вы не покупаете ватты. Вы покупаете систему, которая обеспечивает свет для выращивания ваших растений, поэтому количественное измерение светоотдачи и эффективности, с которой система производит этот свет, является критической метрикой, которую вы должны использовать для сравнения эффективности световых решений для садоводства.

Зачастую многие путают понятие люксов и люменов при проекте освещения склада. Поэтому сегодня мы поможем вам в этом вопросе. Важно понимать, что люкс (Лк) – это показатель освещенности, а люмен (Лм) – уровень характеристики светового потока источника света.

  • Согласно СНиП, один Люкс освещенности производит световой поток равный одному Люмену при условии, что люмен равномерно освещает один квадратный метр площади. Соответственно, чтобы перевести люмены в люксы:

Клюкс = Клюмен/Км2, где:

Клюкс – освещенность (количество люкс), Клюмен – количество люмен в световом потоке, Км2 – количество освещаемой площади в м2.

  • Для того, чтобы перевести люксы в люмены потребуется расчет по формуле:

Клюмен = Клюкс * Км²

  1. Важно помнить о равномерности освещения при расчете. Что это значит? Любая освещаемая поверхность должна быть равноудалена от источников света, а свет должен попадать на освещаемый участок под одним углом.
  2. Пример:

Помещение объемом 100 м3. и выстой потолка 10 м. Стеллажи отсутствуют. На потолке установлено 150 ламп накаливания мощностью 100 Вт. Какова будет освещенность помещения?

Расчет: От одной лампы накаливания 100 Вт исходит световой поток в количестве 1300 Люмен (Лм). Получаемый поток делится на шесть поверхностей (стены, пол, потолок) – общая освещаемая площадь составляет 3000 м². Соответственно средняя освещенность составит: 1300*150/3000 = 65 Лк.

Решить обратную задачу, с целью определения светового потока, при заданных площади поверхности и освещенности – необходимо просто умножить площадь на освещенность.

  1. На практике же световой поток проще всего измеряется не путём расчетов, а используя приборы – фотометрические гониометры, сферические фотометры. Также, большинство ламп имеют стандартные характеристики то для расчетов можно использовать данную таблицу:
Вид источника света Получаемый световой поток
Светодиод 110 Лм/Вт
Натриевые лампы 180 Лм/Вт
Лампа накаливания 100 Вт 1300 Лм/Вт

Лм/Вт – показатель уровня эффективности источников света. Т.е. один светодиод мощностью 10 Вт обеспечит световой поток 1000 Лм. Что в соответствии лампам накаливания, которая потребляет 120 Вт.

Используя данную информацию можно понять экономическую выгоду и эффективность освещения от установленного оборудования на складе.

Комментарии 2015.01.31

После того, как важность использования искусственного освещения при выращивании растений была обоснована научно, производство специальных ламп для садоводов и фермеров было начато с широким размахом. В

Той статье будут обсуждаться различные типы освещения, широко применяемые в технологии выращивания растений и гидропонике. Тип освещения — один из основных факторов, влияющих на результат роста. Остальные — это уровень углекислого газа, вода, минеральные удобрения, экология и качество света. Приведенные ниже сведения будут полезны для создания и наладки своего освещения, используя стандартную классификацию типов электрического освещения.

В последнее время использование искусственного света становится все более и более экономически выгодным. Стоимость покупки и обслуживания ламп становится все ниже, а источники освещения все более мощными. Все это, вкупе с возможностью транспортировки представителей флоры, а также развитием рынка специальных гидропонных продуктов, делает возможным выращивание растений вообще без почвы.

Искусственное освещение может использоваться в садоводстве и фермерстве в трех случаях:

  1. Для полного обеспечения получения света, в котором нуждается растение.

  2. Для дополнения солнечного света, в котором нуждаются растения. Особенно актуально это в зимние месяцы — период сокращения часов светового дня.

  3. Для увеличения продолжительности светового дня. Актуально для достижения специального эффекта роста или цветения.

Фотосинтетически активная радиация, кривая восприятия растений

Подобно тому как люди нуждаются в сбалансированной диете, растения также ощущают потребность в сбалансированном полноспектральном освещении. Качество света не менее важно, чем количество. Растения восприимчивы к свету примерно в том же диапазоне, что и человеческий глаз. Эта порция светового спектра соотносится с фотосинтетически активной радиацией (ФАР) в спектральном диапазоне 400-700 нм. Тем не менее, восприятие растений внутри этого участка отлично от аналогичного у человека.

Человек имеет пиковое восприятие желто-зеленой части спектра (около 550 нм). Эта «оптическая желтизна» используется для восприятия отлично видимых явлений и объектов. Растения же значительно более эффективно воспринимают красный и синий цвета, причем пик находится в районе 630 нм. Графики ниже демонстрируют кривые восприятия растений и людей. Обратите внимание на различия линий.

Равнозначно тому как для человека наилучшим источником калорий является жир, для растений лучшая пища — это красный свет. Однако, растения освещаемые исключительно красным и оранжевым светом большей частью не вырастут должным образом. Причина этого в том, что для полноценного роста листвы (особенно важно для овощей) и массы крайне важен синий свет. Многие другие комплексные процессы зависят и от других спектральных диапазонов. Определение правильной спектрально порции света зависит от вида растения. Принятие решения о количестве необходимого света также должно учитывать части спектра уже задействованные при освещении. При подборе освещения для растений не могут применяться те же стандарты, что и при выборе источника света для людей. Некоторые принципы соответствия и различий могут быть использованы для определения необходимой меры света в гидропонике.

Измерение уровня освещения для людей. Люмен (лм) и Люкс (лк)

Как мы оцениваем количество света, необходимое людям ? Очевидный способ — определение того, насколько ярким является источник света и насколько «хорошо» глаза видят при нем. Поскольку человеческий глаз наиболее чувствителен к восприятию «желтого» участка спектра, наибольшее внимание уделяется именно ему, в то время, как синий и красный цвета несколько «обделены». Это все является основой для измерения общего количества единицей измерения, называемой люменом.

Свет, взятый из источника, распространяется по всему помещению для создания освещаемого пространства. Уровень освещения определяется единицей измерения «люкс», которая показывает как много люменов приходится на один квадратный метр пространства. Освещение в 1000 лк означает, что 1000 лм приходится на каждый квадратный метр площади.
Аналогично «люмен на квадратный фут (лм/фут²)» — единица измерения, которая показывает количество люменов на один квадратный фут.

Как бы то ни было, и люмен, и люкс отображает исключительно человеческое восприятие светового спектра, потому как растения воспринимают все совершенно иначе.

Каким же образом следует измерять уровень света для растений ? Есть 2 основных способа для определения этой величины: измерение уровня энергии или подсчет количества фотонов.

Уровень Ватт фотосинтетически активной радиации.

Ватт — объективная мера для измерения количества энергии, выделяемой лампой ежесекундно.

Энергия в свободном состоянии измеряется в Джоулях, и один Джоуль в секунду называется Ватт.

Лампа накаливания мощностью 100 Вт генерирует 100 Дж энергии каждую секунду. Однако, как много световой энергии производится при этом ?
Около 6 Дж в секунду = 6 Вт.
Мы видим, что мощность составляет всего лишь 6 %. Большинство же оставшейся энергии выделяется в тепловой форме.

Многие газозарядные лампы, например, натриевые газозарядные лампы или металлогалогенные лампы значительно более эффективны по сравнению с лампами накаливания, потому как, соответственно, 30 и 40 % выделяемой энергии преобразуют в свет.

Поскольку растения используют энергию в диапазоне 400 — 700 нм, то свет на этом спектральном участке называется фотосинтетически активной радиацией или просто ФАР. Для измерения энергии, выделяемой в этом диапазоне в секунду используется величина Вт ФАР. Это объективная мера для растений в противоположность субъективной мере, измеряемой в люменах, для определения влияния на восприятие человека. Ватт ФАР прямо указывает на количество энергии, которую растения могут использовать в реакции фотосинтеза.
Исходящие 400 Вт лампы накаливания равнозначны 25 Вт света, а из 400 Вт энергии, излучаемой металлогалогенной лампой, около 140 Вт приходятся на свет. Если принять во внимание тот факт, что на ФАР приходится основная «видимая» часть спектра, то логичным заключением будет то, что металлогалогенная лампа производит 140 Вт ФАР. Газозарядные лампы имеют несколько меньший показатель: 120-128 Вт, потому что свет желтый и содержит большее количество люменов.
«Освещенность» измеряется в Вт ФАР на метр квадратный, однако это не совсем верное понятие для определения эффективности света при выращивании растений, поэтому в садоводстве чаще используется термин «облученность», измеряемая в Вт/м2 или Ватт на метр квадратный.

Следующий важный принцип, который следует понять для того, чтобы определить точное количество света, необходимое растениям — это осознание того, что свет распространяется не чем-то цельным, но пучками, именуемыми «фотонами». Эти пучки являются минимальными носителями энергии, путем которой свет и передается. Поскольку реакция фотосинтеза протекает путем поглощения атома фотона, то целесообразно будет подсчитать их количество, которое ежесекундно принимает на себя растение.

Поскольку только фотоны света ФАР участка спектра являются активатором реакции фотосинтеза, то имеет смысл измерить только их количество. Теоретически лампы могли бы быть настроены на количество фотонов, излучаемых ежесекундно, но на сегодняшний день такие лампы не производятся.

Биологи-исследователи говорят о фотонном потоке, которым облучается поверхность, — важной части исследуемого вопроса, обозначаемой ФФП ФАР (Photosynthetic Photon Flux, PPF), где ФФП не что иное, как фотосинтетический фотонный поток—величина, показывающее количество фотонов приземляющееся ежесекундно на 1 квадратный метр облучаемой поверхности.

Друга важная величина — конверсия фотонного потока (YPF PAR or Yield Photon Flux). Этот показатель явственно демонстрирует нам насколько эффективно растение использует полученный фотонный «капитал». Поскольку «красные» цвета более активно способствуют запуску фотосинтеза, данные измерения уделяют внимание прежде всего подсчету именно их.

Поскольку фотоны крайне малы по своим габаритам, то в науке, вместо чисел вида 1 000 000 000 000 000 000, используется обозначение «1.7 микромоль фотонов» ( знак µмоль). Микромоль содержит в себе 6 x 1017 фотонов, а 1 моль 6 x 1023 фотонов.
Освещенность (или «облученность») измеряется количеством Ватт на квадратный метр или количеством микромоль на квадратный метр.

Несмотря на то, что все три величины (Ватт на метр квадратный, фотосинтетический фотонный поток, конверсия фотонного потока) позволяют измерить количество света, которое получают растения, человеческий глаз не способен воспринять кривую спектра ФАР — 400-700 нм. Следует заметить, что некоторые ученые предлагают иные показатели: 350-750 нм. но принципиальной разницы для садоводов любителей в этом нет.

Фотосинтез и фотоморфогенез

Растения получающие недостаточно света, производят слабые, вытянутые листья и страдают общим недостатком массы. Другие же растения, наоборот, получающие чрезмерное количество света, выглядят исушенно-безжизненно и имеют обесцвеченную листву из-за разрушения хлорофилла.

Также растения могут быть повреждены избыточной ультрафиолетовой радиацией

Однако, внутри допустимой нормы растения прекрасно откликаются на нужную дозировку света, показывая хорошие результаты в росте и наборе массы. А относительная квантовая эффективность является той мерой, которая демонстрирует максимальную работу каждого фотона.
Кривая зависимости относительной квантовой эффективности от длины волны называется кривой реакции растений к фотосинтезу, о чем было сказано ранее.

Также предоставляется возможным построить график, демонстрирующий эффективность определенных участков спектра на осуществление реакции фотосинтеза. Факт того, что фотоны синего света производят больше энергии, чем фотоны красного цвета обязательно должен быть принят во внимание, и тогда кривая может быть запрограммирована на измерение исключительно «люменов растений» или «люменов человека». Это и должно произойти в обозримом будущем. Например, уже сегодня компания Venture Lighting International предлагают установленные Вт ФАР счетчики на серии ламп Sunmaster, предназначенных специально для рынка растениеводческих технологий.

Главной составной частью растений, обеспечивающей фотосинтез является хлорофилл. Некоторые ученые извлекали его из растений для определения реакции на световое излучение различной длины волн и спектральной частотности, ожидая, что его реакция будет аналогичной реакции фотосинтеза растений. Однако, исследования показали, что реакция других компонентов (в частности, каротиноидов и фикобилинов) не менее важна для протекания нормальной реакции фотосинтеза. Таким образом, кривая отклика растений представляет собой собирательную величину, состоящую из значений реакций всех необходимых пигментов, и характерную для большинства растений (хоть и не для всех, т.к. разница, порой, достигает 25 %). Хотя в газозарядных лампах и лампах накаливания спектральная величина излучаемого света остается неизменной, металлогаллогенные лампы предоставляют возможность выбора температуры и спектрального диапазона освещения.

В дополнение к фотосинтезу, который имеет следствием материальный рост, другие функции (прорастание, цветение и пр) вызваны наличием или отсутствием света. Эти процессы называются фотоморфогенезом и зависят не столько от интенсивности света, сколько от облучения в строго классифицированных спектральных рамках (синий, дальний красный или просто красный), а также от действия специальных рецепторов (фитохромы и криптохромы).

Растения «видят» свет иначе, чем люди. Именно поэтому люмены, люксы и футсвечи не всегда являются величинами, показывающими достаточный уровень освещенности, так как это меры, прежде всего всего отображающие уровень видимости. В случае с растениями лучше использовать значения Вт ФАР, фотосинтетического фотонного потока и конверсию фотонного потока.
Кроме того, важным является не только количество, но и качество света.

Проектируем простой осветительный макет.

Шаг 1. Определяем уровень освещенности в Вт ФАР/метр квадратный.

Какой уровень освещения максимально хорошо подходит растениям ?
Это зависит от типа растений, стадии роста, уровня освещенности помещения и других факторов. рекомендации, размещенные в технических брошюрах следует рассматривать как важный источник информации. В общем и целом, растения однозначно растут быстрее при более качественном уровне света, но это вызывает дополнительные расходы на электроэнергию.

Так как лампы отличаются друг от друга, то и соответственно отличаются настройки, применяемые к ним, поэтому точный расчет настроек обязателен для каждого отдельного устройства.

Например, специальная техническая брошюра рекомендует Вам ППФ ФАР в размере 400 µмоль на метр квадратный. Таблица ниже рекомендует Вам 85 Вт ФАР на метр квадратный. Коэффиценты конверсии между ППФ ФАР, Вт ФАР зависят от источника света. Например, 400 Вт лампа накаливания излучает больше люменов, чем 400 Вт металлогалогенная лампа, но меньше Вт ФАР. Также значение имеет цветовая температура. Таблица ниже поможет Вам в настройках металлогалогенных ламп.

Типичный уровень света

Вт ФАР на метр квадратный

Микромоль на метр квадратный

Люкс (количество люменов на метр квадратный)

Футсвечи

Темный

Колеблется

Колеблется

Колеблется

Колеблется

Низкий

6,000

Средний

12,000

Высокий

21,000

Очень высокий

36,000

Для большего углубления в техническую сторону вопроса коэффициентов между различными типами источников света рекомендуем обратиться к следующим источникам: Langhans and Tibbits, «Plant Growth Chamber Handbook», North Central Regional Research Publication No. 340, Iowa State University (1997).

Однако имейте ввиду, что технология улучшилась и эффективность источников света возросла, поэтому числа, приведенные там, несколько устарели.

Шаг 2. Рассчитайте площадь, которую Вы хотите осветить (в кв. м)

Пример: 12м х 6м=72 квадратных метра

Шаг 3. Рассчитайте требуемое количество Вт ФАР на всю площадь.

Пример: Требуется 85 Вт ФАР на 1 квадратный метр. Всего 72 квадратных метра, значит в общей сумме необходимо 6120 Вт ФАР.

Шаг 4. Рассчитайте количество Вт ФАР, которые требуется получить из источника. (Как правило на 50% больше, чем в пункте 3 )

Если около 1/3 световой энергии теряется в пространстве, то нам нужно увеличить мощность ламп на 50% Вт ФАР.

Пример: 1.5 х 6120 = 9180 ФАР

Я бы рекомендовал обратить внимание на 1000 Вт лампу с 400 Вт ФАР.

Шаг 5. Выбор мощности лампы (400 Вт, 1000 Вт и т. д.) и подсчет Вт ФАР

400 Вт лампа может давать 140 Вт ФАР, 1000 Вт лампа 380 (420 ) Вт ФАР.
Высокомощные лампы требует на самом деле более экономичны на макро уровне и позволяют установить освещение высокого качества, что имеет следствием увеличенный рост растений (на 20 и 30 % )

Шаг 6. Подсчет необходимого количества ламп

Разделите общую сумму Вт ФАР на кол-во Вт ФАР каждой лампы.

Пример: 9180 / 400 = 22.95 , т. е. Нам нужно около 23 ламп.

Шаг 7. Используйте сетку для развешивания ламп

Например, 24 лампы могут быть разделены по секторам 6 х4

Желаем успехов!

Рекомендуем к прочтению

  1. Светодиодные фитолампы против ДНАТ >>
  2. Исследования по увеличению КПД люминесцентных ламп >>
  3. 10 преимуществ светодиодных фитоламп >>
  4. Вся правда о светодиодных фитолампах >>

ООО «Мурманские мультисервисные сети» (сокращённое наименование ООО «М2С») – является одним из крупнейших универсальных операторов связи в городе Мурманске, предоставляющих услуги частным лицам и корпоративным клиентам.
Компания М2С предоставляет весь спектр современных телекоммуникационных услуг:

  • Кабельное аналоговое и цифровое телевидение;
  • Широкополосный доступ к сети Интернет;
  • Телефонию;
  • Аренда каналов связи;
  • Хостинг;
  • Объединение корпоративных сетей;
  • Поставка оборудования;
  • Строительство сетей связи;

Транспортной средой для предоставления услуг широкополосного доступа к сети Интернет, аналогового и цифрового телевидения, телефонии является собственная волоконно-оптическая сеть протяжённостью более 300 км. В зоне охвата более 90% жилых и административных зданий в г. Мурманске и г. Кола. Сеть строится по наиболее прогрессивной технологии Fiber To The Building – «оптика до здания», которая позволяет предоставлять сразу несколько услуг по одному кабелю. Выбранная технология обеспечивает высокое качество передачи данных и практически безграничную масштабируемость сети.
Домовые распределительные сети строятся по технологии Fast Ethernet скорость передачи данных 100 Мбит/с. При подключении не используется телефонная линия.
ООО «М2С» располагает собственной городской телефонной номерной емкостью и предоставляет полный спектр услуг телефонной связи самого высокого качества благодаря использованию современного цифрового оборудования и цифровых линий связи.
Мы предлагаем услуги по комплексному решению задачи телефонизации больших и малых офисов, а также по объединению разрозненных телефонных сетей предприятия в единое номерное пространство и подключение существующих УПАТС к телефонной сети общего пользования (ТфОП) по цифровым каналам связи.
Почему клиенты выбирают ООО «Мурманские мультисервисные сети»:

  • Мы стремимся предоставлять услуги лучшего качества, обеспечивать лучший сервис;
  • Мы находим индивидуальный подход к каждому клиенту;
  • Мы предлагаем простые и интуитивно понятные решения;
  • В нашей компании работает творческий, доброжелательный и ответственный коллектив, в котором ценятся профессионализм и добросовестность.

Мы стремимся обеспечить мурманчанам максимальный телекоммуникационный комфорт, а так же сделать Мурманск передовым городом в сфере информационных технологий в России.

Оставьте комментарий