Напряжение 0 4 кв

Определение 1

Класс напряжения представляет в общем случае численное значение напряжения, применяемое в электрических сетях при передаче энергии потребителям.

Необходимость введения такого понятия в физике была обусловлена повышением эффективности распределения электрической энергии и снижением потерь при ее передаче. Решение такой практической задачи привело к классификации линий электропередач по участкам.

Содержание

Определение понятия и классификация классов напряжения

Замечание 1

В зависимости от классификации электросетей, изменяться будут и классы напряжения. Модернизация электрических сетей энергетическими компаниями приводит к повышению класса напряжения. Это обусловлено стремлением сократить расходы и потери при транспортировке электрической энергии непосредственно к потребителю.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Передача электрической мощности (если напряжение при этом низкое) приводит к большим ее потерям из-за высоких значений протекающего тока. Формула $\Delta S=I^2R$ показывает потерю мощности в зависимости от протекающего тока и сопротивления линии. Снижению потерь способствует уменьшение протекающего тока: так, если уменьшить ток в 2 раза, потери мощности снизятся в 4 раза.

Формула полной электрической мощности записывается следующим образом:

$S=IU$

Передача аналогичной мощности при пониженном токе потребует повышения напряжения во столько же раз. Большие мощности, таким образом, целесообразно передавать, если напряжение будет высоким. Строительство высоковольтных сетей, в то же время, сопровождается многими техническими трудностями. Более того, непосредственное потребление электрической энергии при высоком напряжении будет достаточно проблематичным для конечного потребителя.

Это способствовало разделению сетей на участки в соответствии с классом напряжения (т.е. уровнем). Трёхфазные сети, чья задача заключается в передаче больших мощностей, имеют такие классы напряжения:

  • свыше 750 кВ (1150 и 1500) (класс считается ультравысоким;
  • ниже 750 кВ (500 кВ, 400 кВ) (это европейский стандарт, сам класс называется сверхвысоким);
  • 330 кВ, 220 кВ, 150 кВ, 110 кВ – класс высокого напряжения;
  • 35 кВ, 33 кВ, 20 кВ — класс среднего первого напряжения;
  • 10 кВ, 6 кВ, 3 кВ – класс среднего второго напряжения;
  • 24 кВ, 22 кВ, 18 кВ, 15,75 кВ (считается наиболее распространенным) – класс напряжения на выводах генераторов;
  • 0,69 кВ (европейский промышленный стандарт), 0,4 кВ (основной стандарт), 0,23 кВ, 110 В (старый европейский стандарт) и ниже – класс низкого напряжения.

Классификация электрических сетей для классов напряжения

Классы напряжения классифицируют следующим образом:

  • в зависимости от области применения и назначения;
  • согласно масштабным признакам и размерам сети;
  • по роду тока.

Согласно первому пункту, существуют сети:

  1. Общего назначения (снабжение электричеством в бытовом, промышленном, сельскохозяйственном и транспортном формате).
  2. Автономного электроснабжения (для мобильных и автономных объектов, таких как, суда, космические аппараты и др.).
  3. Технологических объектов (для производственных объектов, а также других инженерных сетей).
  4. Контактные (с целью передачи электроэнергии на транспортные средства, например, локомотивы или трамваи).

Согласно второму пункту, сети бывают:

  1. Магистральными (для связи отдельных регионов с центрами потребления, характеризуются высоким и сверхвысоким уровнями напряжения, а также большими потоками мощности).
  2. Региональными (питаются от магистральных сетей и ориентированы на обслуживание крупного потребителя (город, район и т.д.), характеризуются средним и высоким уровнями напряжения, потоки мощности при этом большие).
  3. Районными (питание осуществляется от региональных сетей, собственных источников питания обычно не имеют, ориентированы на обслуживание малого и среднего потребителя), характеризуются низким и средним уровнями напряжения, а также незначительными потоками мощности;
  4. Внутренними (их задача заключается в распределении электроэнергии на небольших пространствах (в пределах города или отдельно взятого района), иногда имеют собственный (резервный) источник питания, характеризуются незначительными потоками мощности и низким уровнем для напряжения).
  5. Сетями самого нижнего уровня (электрическая проводка), питают отдельное здание, цех или помещение, речь идет о малых потоках мощности и низком уровне (бытовом) напряжения.

Согласно третьему пункту, ток бывает:

  • переменным трехфазным (передача тока идет по трем проводам со смещением фазы переменного тока в каждом из них на 120 градусов относительно других), каждый провод в нем считается фазой с определенным напряжением, выступающей в роли 4-го проводника;
  • переменным однофазным (ток передается по двум проводам за счет бытовой электропроводки от подстанции или распределительного щита);
  • постоянным током (для некоторых сетей автономного электроснабжения и ряда специальных сетей сверхвысокого напряжения).

Мощность трехфазного переменного тока выражается формулами:

$P=\sqrt{3}UI\cos{\varphi}$ (активная);

$Q= \sqrt{3}UI\sin{\varphi}$ (реактивная);

$S=\sqrt{3}UI=\sqrt{P^2+Q^2}$.

Где $U$ и $I$ — это линейное напряжение и ток соответственно, а $\varphi$ — угол сдвига фаз между векторами напряжений и токов для одноименных фаз.

Конструкция ЛЭП для разных классов напряжения

Конструкция ЛЭП считается индивидуальной для каждого из классов напряжений. Низковольтные линии, например, размещают на одиночных столбах, вкопанных в грунт. Шаговое напряжение здесь окажется не очень большим при аварийной ситуации, а защита будет обеспечена местным заземленным громоотводом.

Линии до 20 кВ по конструкции мало отличаются от вышеописанных. При этом увеличиваются размеры столбов, изоляторы, а также расстояние между кабелями. Экономически неоправданным здесь считается использование молниезащитных тросов, поэтому они не используются.

Начиная с линий 35 кВ, конструкция усложняется, в особо опасных районах (защита от грозы) подвешивают молниезащитные стальные тросы, столбы ставят из материалов с повышенной прочностью на излом, между проводами создают мощную изоляцию за счет специальных изоляторов, закрепленных на траверсах.

На ЛЭП с классом напряжения 110 кВ молниезащитные тросы подвешивают уже по всей длине. Линии на 330 кВ имеют высокие и мощные арочные столбы, при этом количество изоляторов здесь увеличено с целью блокировки возникновения электрической дуги и снижения коронных разрядов.

Класс напряжения — это типовое значение линейного (междуфазного) напряжения в электрических сетях, которое является номинальным для различных групп оборудования: трансформаторов, линий, генераторов, реакторов и прочих. Класс напряжения определяет требуемый уровень электрической изоляции электрооборудования. Порядок класса напряжения определяет то, для каких целей и задач применяется это оборудование. В частности, низкие напряжения используются для распределения мощности между мелкими потребителями на малые расстояния, средние классы — для распределения мощности между средними потребителями и группами потребителей на умеренной дистанции, высокие и сверхвысокие классы — для распределения мощности между крупными потребителями и для передачи мощности на большие расстояния. Иными словами низкие и средние классы напряжения характерны для распределительных сетей, в то время как высокие и сверхвысокие классы — для системообразующих сетей, связывающих отдельные энергосистемы.

Необходимость применения различных классов напряжения

Энергосистема на разных классах напряжения

На заре электроэнергетики, когда идея объединенных энергосистем ещё не возникла, электрические сети использовались изолированно на отдельных предприятиях, аналогично тому, как до этого применялись механические передаточные системы. Каждое из предприятий стремилось построить свою собственную станцию и управлять её самостоятельно. Идею электростанции, как независимого объекта, имеющего своей целью исключительно выработку и продажу электроэнергии как товара, одним из первых предложил Сэмюэль Инсулл. И если прежде низких классов напряжения, которые могли быть различны, было достаточно для нужд промышленности, поскольку задачи совместной работы предприятий не стояло, то теперь в новых реалиях возникло два ключевых вопроса: как передать мощность от электростанций сразу нескольким потребителям — проблема удаленности источников электроэнергии от районов потребления, и как обеспечить совместимость по напряжению всех используемых установок?

Если второй вопрос разрешился с точки зрения электроэнергетики сравнительно просто: был введен стандарт на классы напряжения, что обеспечило их совместимость, то первый из них оказывается напротив крайне сложным, поскольку передача на большое расстояние создает сразу несколько инженерных проблем. Ниже приводятся основные их них:

Чем выше напряжение, тем меньше потери мощности. Данную закономерность хорошо описывает формула потерь в элементе сети по параметрам конца передачи:

\displaystyle\Delta\dot{S} = \frac{P^2+Q^2}{V^2}(R+jX),

где \Delta\dot{S} — потери мощности в передаче, МВА; P, Q — мощности в конце передачи, МВт и МВар; V — модуль напряжения в конце передачи, кВ; R, X — активное и реактивное сопротивления передачи, Ом. Эта формула очевидно показывает, что при передаче одной мощности при увеличении напряжения потери мощности квадратично уменьшаются. Чем выше напряжение, тем выше предел передаваемой мощности. Для любой передачи существует предел передаваемой активной мощности, определяемые статической устойчивостью, который в простейшем случае на основании уравнения угловой хараткеристки передачи определяется следующим выражением:

\displaystyle P_{max} = \frac{U_1 U_2}{X},

где U_1, U_2 — напряжения по концам передачи, кВ; X — реактивное сопротивление передачи, Ом; P_{max} — предел передаваемой мощности мередачи, МВт. Нетрудно видеть, что с ростом напряжения предел передаваемой мощности квадратично растет.

Наиболее рациональный класс напряжения с точки зрения минимума потерь и капиталловложений определяется на этапе долгосрочного планирования режимов работы электрической сети.

Классификация классов напряжения

По уровню напряжения все классы напряжения условно разделяют на следующие группы:

  • Ультравысокий класс напряжения — от 1000 кВ.
  • Сверхвысокий класс напряжения — от 330 кВ до 750 кВ.
  • Высокий класс напряжения — от 110 кВ до 220 кВ.
  • Средний класс напряжения — от 1 кВ до 35 кВ.
  • Низший класс напряжения — до 1 кВ.

Комментарии к вопросу о классах напряжения

При расчетах коротких замыканий следует обращать особое внимание на класс напряжения, поскольку в зависимости от класса может быть различным режим работы нейтрали в сети. В частности, на низших и средних классах напряжения нейтраль в подавляющем большинстве случаев оказывается изолированной — это позволяет при адекватных затратах на повышенный уровень изоляции облегчить режим работы сети, а именно фактически исключить фактор однофазных замыканий, которые, являясь наиболее вероятными среди оных в сетях всех уровней, при изолированной нейтрали не представляют существенной угрозы и, что особенно важно, не приводят к нарушению электроснабжения потребителей. Таким образом, для расчётчика класс напряжения должен в данной ситуации, как минимум, указать на необходимость уточнения состояния нейтрали и учет этого фактора в дальнейших расчётах.

Повышенное напряжение базисного узла

Во многих практических расчётах можно столкнуться с тем, что напряжение базисного узла задается повышенным и редко совпадает с номинальной величиной. В частности, для сетей 110 кВ величина составляет 115 (121) кВ, для сетей 220 кВ — 230 (242) кВ. Объяснений данному факту может быть несколько.

В первую очередь это может быть обусловлено тем, что в соответствии с указаниями по расчёту коротких замыканий при учете тока подпитки от внешней системы необходимо задавать напряжение этой системы выше номинала на 5 %. Эта мера направлена на намеренное завышение расчётного тока короткого замыкания, чтобы исключить неопределенность, связанную с составом оборудования и режимом внешней сети.

Второе объяснение менее убедительно по сравнению с первым, но имеет под собой вполне логичное основание. Как правило, базисный узел задается на шинах мощной электростанции района, либо на шинах подстанции высокого или сверхвысокого напряжения, связывающей район с внешней системой. Опыт расчётов подсказывает, что в большинстве случаев мощность именно вытекает из базисного узла, а не наоборот. В начале передачи, опять же как правило, напряжение выше, чем на приемном конце, а на электростанции напряжения в нормальном режиме выше, чем у потребителей. Таким образом, умышленное завышение напряжения базисного узла имеет своей целью отразить указанную физическую закономерность.

Цветовое обозначение классов напряжения

В отечественной практике расчётов и управления энергосистемами при графическом отображении электрических схем сетей и систем принято использовать унифицированное цветовое обозначение классов напряжений. При этом есть несколько стандартов и несколько вариантов цветовых схем классов напряжения, в частности внимания заслуживают прежде всего Стандарт СО ЕЭС и Стандарт ФСК ЕЭС. Таблицах ниже указаны общепринятые цветовые обозначения раздичных классов напряжения по этим стандартам.

Разница палитр, как не трудно заметить, не драматична и не препятствует использованию ни одной из них, но предагаемый стандартом ФСК вариант, подразумевает работу в программном комплексе с черным фоном, из-за чего обесточенные участки предлагается показывать белым цветом. Таким образом, ориентация на цветовую схему стандарта СО ЕЭС является более удобной для рядовых расчётов. Категорически соблюдать требования к классам напряжения необходимо только при сотрудничестве непосредственно с соответствующими организациями.

Использованные источники

Изношенность электрических сетей, постоянные перегрузки ухудшают качество электроэнергии. Скачки напряжения отрицательно отражаются на работе бытовых электросетей.

Стабилизаторы напряжения не только повышают качество поставляемого электричества. Устройства предотвращают выход из строя бытовых электроприборов, продлевают их срок службы.

Необходим ли стабилизатор дома?

Современные бытовые электрические устройства (особенно импортных производителей) обладают повышенной чувствительностью к скачкам напряжения. Выход из строя, последующая диагностика и ремонт превышают стоимость покупки стабилизирующих устройств.

Стабилизатор напряжения для дачи

Для дачных и садовых домиков необходимы модели, насчитанных не более чем на 5 кВт. Этого вполне достаточно для подключения холодильника, электропечи и бойлера.

Стабилизаторы напряжения для дома

Для частных домов подходят стабилизаторы напряжения в диапазоне 5-10 кВт. Если в доме нет газовой плиты, то необходимо приобретать устройства, рассчитанные на большую мощность либо несколько на отдельные группы потребителей.

Что необходимо знать перед покупкой стабилизатора?

Прежде чем совершить покупку дорогостоящего устройства, необходимо учитывать следующие особенности:

  • Суммарная нагрузка бытовой сети – суммарная мощность электроприборов (указана в паспорте устройств).
  • Тип установки: настенный, настольный, встраиваемый в нишу.
  • Характер нагрузки: нагревание, электроосвещение и др.
  • Система охлаждения. Не следует приобретать шумные модели для частных домов и квартир, т.к. они будут доставлять хозяевам дискомфорт.
  • Точность выходного напряжения. Параметр выбирается по прибору с более высоким классом точности.
  • Диапазон рабочих напряжений. Стабилизаторы с малым диапазоном стоят намного дешевле. Также не стоит приобретать дорогие модели с большим разбросом напряжений, если в доме нет таких электроприборов.
  • Производители. Зарекомендовавшие себя производители предлагают не только гарантийный срок обслуживания и качественный сервис. Технические характеристики приборов популярных марок соответствуют заявленным в техпаспорте, что важно для бытовой техники.

Важно! Для дач и садовых домиков, в которых нет проживающих постоянно людей, а также в которых малое количество электроприборов, следует приобретать портативные (переносные) модели.

Необходимо выбирать стабилизатор напряжения для дачи и дома, учитывая все особенности бытовой электросети, класс напряжения, характеристики бытовых электроустройств.
Правильно подобранные стабилизаторы повысят качество электроэнергии и продлят срок службы электрических приборов.

При заключении:

  1. договора с энергосбытовой организацией (ЭСО) на продажу электрической энергии и мощности по типу «энергоснабжения»
  2. договора с территориальной сетевой организацией (ТСО) на оказание услуг по передаче электрической энергии

требуется определить тарифный уровень (диапазон, класс) напряжения (ТУН), на котором подключён потребитель электроэнергии к сетям ТСО, так как по тарифному уровню напряжения, идентифицируется величина тарифа на передачу электроэнергии или величина предельных уровней нерегулируемых цен на электроэнергию, включающих в себя тариф на передачу электроэнергии.

По моему мнению, при идентификации тарифного уровня (диапазона) напряжения, предопределяющего размер тарифа на услуги по передаче, необходимо учитывать следующие обстоятельства:

1. Понятия «уровень напряжения» и «напряжения» — это разные понятия

2. Понятия «фактический уровень напряжения» и «фактическое напряжение» — это разные понятия

3. При определении фактического уровня напряжения необходимо учитывать, где находится граница балансовой принадлежности (далее по тексту – ГБП): на «источнике питания» или нет?

4. Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении энергопринимающих устройств (далее по тексту – ЭПУ) потребителя к объектам электросетевого хозяйства ТСО

Понятия «уровень напряжения» и «напряжения» — это разные понятия

Выдержка из «Энциклопедии Экспертов»

«Напряжение» – это техническая характеристика энергоустановки, оно указывает, для приёма какого напряжения предназначена ЭПУ. Измеряется в вольтах (В) или киловольтах (кВ). Предопределяется техническими условиями, проектом на ЭПУ. Первично, как правило, напряжение фиксируется в документах о технологическом присоединении, чаще всего – в актах разграничения балансовой принадлежности. В нашей стране ЭПУ предназначаются для приёма следующего «напряжения»:

  1. 0,4 кВ
  2. 1 кВ
  3. 6 кВ
  4. 10 кВ
  5. 20 кВ
  6. 35 кВ
  7. 110 кВ
  8. 150 кВ
  9. 220 кВ и выше

«Уровень напряжения» (иногда «диапазон напряжения» или «тарифный уровень напряжения», или «тарифный уровень (диапазон) напряжения») – это понятие, используемое:

1. в тарифном регулировании – при установлении тарифов на передачу электроэнергии

2. в применении тарифов на передачу электроэнергии в расчётах за услуги по передаче электроэнергии

По «уровням напряжения» тарифы дифференцируются, то есть различаются по величине. Чем выше «уровень напряжения», тем ниже величина тарифа. Поэтому потребители стремятся подтвердить наиболее высокий «уровень напряжения».

Понятие «уровень напряжения» в нормативно-правовых актах (далее по тексту – НПА) появляется и используется в контексте тарифообразования и тарифоприменения.

Согласно пункта 48 , (далее по тексту — ПНД) «тарифы на услуги по передаче электрической энергии устанавливаются в соответствии с Основами ценообразования в области регулируемых цен (тарифов) в электроэнергетике и Правилами государственного регулирования (пересмотра, применения) цен (тарифов) в электроэнергетике, с учетом пункта 42 настоящих Правил»

В соответствии с пунктом 42 ПНД «при установлении тарифов на услуги по передаче электрической энергии ставки тарифов определяются с учетом необходимости обеспечения равенства единых (котловых) тарифов на услуги по передаче электрической энергии для всех потребителей услуг, расположенных на территории соответствующего субъекта Российской Федерации и принадлежащих к одной группе (категории) из числа тех, по которым законодательством Российской Федерации предусмотрена дифференциация тарифов на электрическую энергию (мощность)».

Дифференциация тарифов на передачу электроэнергии по «уровням напряжения» установлена следующими НПА:

  • (далее по тексту – Основы ценообразования)
  • (далее по тексту – Двадцатая методика):

Пункт 81(1) Основ ценообразования гласит: «Единые (котловые) тарифы дифференцируются по следующим «уровням напряжения»:

Пункт 44 Двадцатой методики устанавливает: «Размер тарифа на услуги по передаче электрической энергии рассчитывается в виде экономически обоснованной ставки, которая в свою очередь дифференцируется по четырем «уровням напряжения»:

Из указанных пунктов НПА также видно, что каждый «уровень напряжения» имеет свои напряжения, которые к нему относятся:

  1. к уровню напряжения – высокое напряжение (ВН) относятся напряжения от 110кВ и выше (т.е. 150кВ и т.д.)
  2. к уровню напряжения – среднее первое напряжение (СН1) относится только одно напряжение — 35 кВ
  3. к уровню напряжения – среднее второе напряжение (СН2) относятся напряжения, значения которых попадают в диапазон: 20-1 кВ, т.е. – это 1 кВ, 6 кВ, 10 кВ, 20 кВ и др.
  4. к уровню напряжения – низкое напряжение (НН) относятся напряжения, значения которых 0,4 кВ и ниже (например, 220 В, 150 В и др.)

По уровням напряжения также дифференцируются предельные уровни нерегулируемых цен на электроэнергию, включающие в себя тариф на передачу электроэнергии. Это можно увидеть из формы публикации данных о предельных уровнях нерегулируемых цен на электрическую энергию (мощность) и составляющих предельных уровней нерегулируемых цен на электрическую энергию (мощность), установленной Приложением к (далее по тексту — Правила определения нерегулируемых цен)

Таким образом, понятия «напряжение» и «уровень напряжения» не тождественны. Это разные понятия. Но их часто путают, особенно при определении величины тарифа на передачу электроэнергии, по которому подлежит оплата оказанных территориальными сетевыми организациями (далее по тексту – ТСО) услуг по передаче. Это происходит ещё из-за того, что путаются понятия «фактический уровень напряжения» и «фактическое напряжение».

Понятия «фактический уровень напряжения» и «фактическое напряжение» — это разные понятия

Для определения величины тарифа на передачу электроэнергии важно установить на каком «фактическом уровне напряжения» подключён потребитель электроэнергии. Не на каком «фактическом напряжении», а на каком «фактическом УРОВНЕ напряжения». Это не одно и тоже.

Эти понятия становятся, практически тождественными при ситуации, когда граница балансовой принадлежности потребителя находится НЕ на ИСТОЧНИКЕ ПИТАНИЯ.

В этом случае за «напряжение», относящееся к соответствующему «уровню напряжения», принимают «фактическое напряжение» ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО.

То есть «фактическое напряжение» ЭПУ совпадает с «напряжением», которое относится к тому или иному «уровню напряжению». «Фактическое напряжение» ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО ПРЕДОПРЕДЕЛЯЕТ «фактический УРОВЕНЬ напряжения», используемый для выбора величины тарифа на передачу электроэнергии.

Например, если у вас «фактическое напряжение» ЭПУ в точке подключения к объектам электросетевого хозяйства ТСО составляет 6кВ, и эта точка подключения находится НЕ на источнике питания, то напряжение, относящееся к соответствующему «уровню напряжения», будет тоже 6 кВ. Поэтому, «уровень напряжения» будет «средним вторым» (СН2), так как напряжение ЭПУ полностью совпадает с напряжением, относящимся ко второму «уровню напряжения» (СН2). Отсюда, ваш «фактический уровень напряжения», на котором подключены ваши ЭПУ к объектам электросетевого хозяйства ТСО, будет полностью определяться указанным выше совпадением «напряжений»: напряжения ЭПУ и напряжения, относящегося к соответствующему «уровню напряжения».

Далее, исходя из «фактического уровня напряжения», по тарифному меню ТСО, определяем величину тарифа на передачу электроэнергии, соответствующую уровню напряжения — среднее второе напряжение (СН2).

Совсем иная ситуация, когда граница балансовой принадлежности потребителя находится на ИСТОЧНИКЕ ПИТАНИЯ.

При определении фактического уровня напряжения необходимо учитывать, где находится граница балансовой принадлежности: на «источнике питания» или нет?

Когда ГБП потребителя находится на ИСТОЧНИКЕ ПИТАНИЯ, определение «фактического уровня напряжения», на котором подключены ЭПУ потребителя к объектам электросетевого хозяйства ТСО, производится НЕ по фактическому напряжению ЭПУ потребителя, а по фактическому значению питающего (высшего) «напряжения» центра питания (подстанции).

То есть «фактический уровень напряжения» ПРЕДОПРЕДЕЛЯЕТСЯ фактическим питающим (высшим) напряжением источника питания, а не фактическим напряжением ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО. В такой ситуации для нас важно не какое фактическое напряжение ЭПУ потребителя, а какое фактическое питающее (высшее) напряжение источника питания. Напряжение ЭПУ потребителя, в этом случае вообще не участвует в определении «фактического уровня напряжения», на котором подключены ЭПУ потребителя к объектам электросетевого хозяйства ТСО, используемого в дальнейшем для выбора величины тарифа на передачу электроэнергии.

Теперь мы должны:

1. соотносить фактическое питающее (высшее) «напряжение» источника питания с «напряжением», относящимся к соответствующему «уровню напряжения»

2. определять «фактический уровень напряжения» по совпадению этих двух напряжений.

Например, если у вас «фактическое напряжение» ЭПУ в точке подключения к объектам электросетевого хозяйства ТСО составляет 6кВ, и эта точка подключения находится на источнике питания, то мы забываем про «фактическое напряжение» ЭПУ.

Сразу же переходим к определению фактического питающего (высшего) напряжение источника питания. Смотрим, что у нас за источник питания? какое высшее напряжение приходит на него? Допустим, у нас источник питания – это подстанция 110/6кВ. Это означает, что на таком источнике питания происходит преобразование напряжения (трансформация) со 110 кВ на 6 кВ. Отсюда, фактическим питающим (высшим) напряжением источника питания является напряжение 110 кВ.

А раз фактическое питающее (высшее) напряжение источника питания составляет 110 кВ, то напряжение, относящееся к соответствующему «уровню напряжения», будет тоже 110 кВ. Поэтому, «фактический уровень напряжения» будет «высоким напряжением» (ВН), так как фактическое питающее (высшее) напряжение источника питания полностью совпадает с напряжением, относящимся к высокому «уровню напряжения» (ВН). Отсюда, ваш «фактический уровень напряжения», на котором подключены ваши ЭПУ к объектам электросетевого хозяйства ТСО, будет полностью определяться указанным выше совпадением «напряжений»: питающего (высшего) напряжения источника питания и напряжения, относящегося к соответствующему «уровню напряжения».

Таким образом, из сказанного следует, что для определения «фактического уровня напряжения» предопределяющего величину тарифа на передачу электроэнергии, сначала необходимо устанавливать, где находится граница балансовой принадлежности:

  1. Не на источнике питания
  2. Или на источнике питания

В первом случае, за напряжение, относящееся к соответствующему «уровню напряжения», надо принимать фактическое напряжение ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО.

Во второму случае, за напряжение, относящееся к соответствующему «уровню напряжения», надо принимать фактическое питающее (высшее) напряжение источника питания, на котором находится ГБП потребителя.

Это вытекает из следующих НПА:

· абзац 3 пункта 15(2) ПНД гласит: «если граница раздела балансовой принадлежности объектов электросетевого хозяйства сетевой организации и энергопринимающих устройств … потребителя … установлена на объектах…, на которых происходит преобразование уровней напряжения (трансформация), принимается уровень напряжения, соответствующий значению питающего (высшего) напряжения указанных объектов …»

· пункт 45 Двадцатой методики устанавливает: «При расчете тарифа на услуги по передаче электрической энергии за уровень напряжения принимается значение питающего (высшего) напряжения центра питания (подстанции) независимо от уровня напряжения, на котором подключены электрические сети потребителя (покупателя, ЭСО), при условии, что граница раздела балансовой принадлежности электрических сетей рассматриваемой организации и потребителя (покупателя, ЭСО) устанавливается на: выводах проводов из натяжного зажима портальной оттяжки гирлянды изоляторов воздушных линий (ВЛ), контактах присоединения аппаратных зажимов спусков ВЛ, зажимах выводов силовых трансформаторов со стороны вторичной обмотки, присоединении кабельных наконечников КЛ в ячейках распределительного устройства (РУ), выводах линейных коммутационных аппаратов, проходных изоляторах линейных ячеек, линейных разъединителях»

На основе всего выше сказанного, можно построить ниже приведённую матрицу определения «фактического уровня напряжения», применяемого в дальнейшем для идентификации величины тарифа на услуги по передаче электроэнергии:

Из этой матрицы наглядно видно:

1. как будет меняться «фактический уровень напряжения» в зависимости от того где находится граница балансовой принадлежности: на источнике питания или нет

2. как «фактический уровень напряжения» зависит или НЕ зависит от фактического напряжения ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО. В первом случае напрямую зависит, во втором никак не зависит.

Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении ЭПУ потребителя к объектам электросетевого хозяйства ТСО

Описанная выше логика, нам нужна, чтобы решить всего одну следующую задачу:

Идентифицировать величину тарифа на передачу электроэнергии, для дальнейшего его применения в расчётах между ТСО и потребителем услуг по передаче электроэнергии в рамках договора энергоснабжения с энергосбытовой организацией (далее по тексту – ЭСО) или в рамках прямого договора оказания услуг по передаче электроэнергии с ТСО.

Целевой результат выполнения данной задачи: Правильно идентифицированная величина тарифа на передачу электроэнергии.

Решается эта задача по следующему алгоритму:

Приведённый выше алгоритм касается только той ситуации, когда энергопринимающие устройства потребителя непосредственно подключены к объектам электросетевого хозяйства ТСО, и к ним применяются:

1. для ситуации когда «ГБП на источнике питания» положения абзаца 3 пункта 15(2) ПНД: «если граница раздела балансовой принадлежности объектов электросетевого хозяйства сетевой организации и энергопринимающих устройств … потребителя … установлена на объектах…, на которых происходит преобразование уровней напряжения (трансформация), принимается уровень напряжения, соответствующий значению питающего (высшего) напряжения указанных объектов …»

2. для ситуации когда «ГБП НЕ на источнике питания» положения части первой абзаца 5 пункта 15(2) ПНД, которые звучат так: «в иных случаях принимается уровень напряжения, на котором подключены энергопринимающие устройства и (или) иные объекты электроэнергетики потребителя электрической энергии (мощности)»

Оставьте комментарий