Перекос фаз в трехфазной сети

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

В сети 380 Вольт при неравномерном распределении напряжения на каждой фазе, возникает их перекос. В результате в промышленных электрических приборах (в основном в двигателе и в трансформаторе) происходит существенное понижение мощности. В быту это явление может привести к выходу из строя бытовой техники и различных электроустановок. Когда они находятся в одном месте, есть вероятность что произойдет перекос. Чтобы не нарушать нормальное электроснабжение необходимо знать и понимать, почему та или иная фаза подвергается подобному явлению. В этой статье мы расскажем читателям сайта сам электрик, что такое перекос фаз в трехфазной сети, какие причины его возникновения и как защититься от негативного воздействия данного явления.

Допустимые значения

Существуют нормы и допустимые значения, которые указываются в соответствующих ГОСТах и ПУЭ относительно качества электроэнергии. Согласно этим нормам соотношение между токами наименее нагруженных проводников и наиболее нагруженных, в распределительных щитах не должно превышать значение 30%, а в панелях ВРУ – 15%. Согласно ГОСТ п. 5.5 допустимый перекос фаз по обратной последовательности должен составлять 2%, а по нулевой – 4%.

Причины возникновения явления

Существует несколько причин для возникновения подобного действия. Основной причиной, когда возникает перекос, считается неправильное и неравномерное распределение нагрузки во внутренней электрической сети, когда одна фаза получает перегрузку,. Вторая и третья в результате будут работать с существенной недогрузкой.

В сети, где присутствует лишь одна фаза, нагрузка также способна возрастать. Это возникает при включении в питание большого количества бытовой техники. Тогда перекос становится заметным, так как мощность падает и приборы прекращают работать.

Из-за того, что бытовые приборы начинают работать некорректно, это может привести к их поломке. Как правило, слабым местом в большинстве устройств в этом случае считаются двигатели. Поэтому именно они и выходят из строя. Проверить где есть перекос, можно с помощью специального прибора (токоизмерительных клещей), который поможет определить, на какой цепи существует перегрузка.

Трехфазная сеть имеет глухозаземленную нейтраль. Именно она выравнивает неравномерное распределение напряжение в электрической цепи. Но при обрыве нуля, роль нейтрали берет на себя одна фаза. Тогда на ней напряжение может достигать до 380 вольт, а на остальных будет 127 вольт и ниже.

Опасность и последствия перекоса

Чем опасен перекос фаз в электросети? Условно негативные моменты можно разделить на три группы:

  1. Вред для электрических приемников (приборов, оборудования): их повреждение, уменьшение срока использования.
  2. Вред для источников электроэнергии: механические повреждения, увеличение потребления электроэнергии, уменьшения срока эксплуатации источника.
  3. Последствия для потребителей: увеличение расходов на электричество, необходимость ремонта электрооборудования, возможное получение травм.

Из-за того что электроэнергия распределяется по проводникам неравномерно, в электросети значительно увеличивается потребление электричества. Трехфазная сеть, у которой образовалась несимметрия, может снизить срок эксплуатации электроприборов и бытовой техники.

Если это автономная электростанция, то расход масла и топлива при такой ситуации значительно увеличивается, а генератор может сломаться. В случае, когда одна фаза получает больше напряжения, чем две другие, электробезопасность нарушается. А это может привести к различным электротравмам, а также к возгоранию электрических бытовых приборов и самой проводки.

Как видно последствия такого явления значительные и их решение и устранение может привести к большим материальным затратам. Для того чтобы избежать подобной неприятной ситуации, следует заранее принимать определенные меры.

Меры защиты

Для того чтобы трехфазная сеть работала симметрично и напряжение на каждой цепи было в норме, следует использовать специальные приборы. Чаще всего выполняют установку стабилизатора напряжения. В быту используются однофазные устройства, которые способны защитить электроприборы и технику. А в промышленности применяется трехфазный стабилизатор, который состоит из трех однофазных устройств. Но полностью устранить перекос такие защитные устройства не могут, так как за ними закреплена только одна фаза и они выравнивают напряжение только в ней.

Поэтому трехфазная сеть не может полностью защититься от подобного явления стабилизаторами, а также ликвидировать их причину и последствия. Бывают случаи, когда эти устройства сами являются причиной неравномерного и неправильного распределения энергии. Исправить подобную проблему можно благодаря альтернативной технологии, которая способна выравнивать напряжение на всех фазах цепи.

Трехфазная сеть защищается от несимметрии такими способами:

  • правильный проект электроснабжения с учетом возможных нагрузок;
  • применение приборов, которые способны автоматически выравнивать нагрузку;
  • изменение в существующей цепи схемы потребления энергии (в случае, когда каждая фаза ранее не рассчитывалась на перегрузку);
  • в самых критических ситуациях необходимо сменить мощность потребителей.
  • установка специального реле контроля фаз и напряжения, которое отключает питание, если обнаружит нессимметрию (на фото ниже).

Таким способом перекос в трехфазной электросети можно исключить и защитить свои электрические приборы от поломки. Напоследок рекомендуем просмотреть полезное видео по теме:

Вот мы и рассмотрели, чем опасен перекос фаз в трехфазной сети и как защититься от этого явления в домашних условиях. Надеемся, предоставленная информация была для вас полезной и интересной!

Будет полезно прочитать:

  • Как собрать трехфазный электрощиток
  • Как пользоваться токовыми клещами
  • Низкое напряжение в сети — что делать

Наиболее распространенной системой передачи электроэнергии является трехфазная, образованная тремя переменными напряжениями, различающимися по фазе на 120°. Несбалансированность напряжений влияет на качество электроэнергии.

Перекос напряжений на приборе

Что называется перекосом фаз

Чтобы понять, что такое перекос фаз, нужно обратиться к построению векторов напряжений трехфазной системы. Вектора линейных напряжений образуют равнобедренный треугольник, а фазные напряжения, выходящие из нулевой точки, напоминают симметричную звезду. Все три фазных напряжения должны быть равны по величине, а углы между ними составлять 120°. Отклонения от этого состояния представляют собой перекос фаз в трехфазной сети.

В схемах трехфазного тока, соединенных по типу «Y», присутствует N-проводник, с помощью которого относительно балансируются показатели напряжения. Когда происходит нарушение его целостности, N-проводником становится один из фазных проводов. Напряжение этой фазы возрастает до 0,4 кВ, что вызывает выход из строя электроприборов, подключенных к ней.

Графическое представление перекоса фаз

Напряжение обратной последовательности появляется при несимметрии фаз трехфазного питания, например, у двигателя или трансформатора. Величины и углы этого напряжения не совпадают с исходным напряжением системы. Степень асимметрии у двигателя зависит от его типа, размера и нагрузки.

Чтобы обнаружить асимметрию в системе, нужно измерить и сравнить друг с другом все три однофазные напряжения (между N-проводником и фазами).

Для расчета дисбаланса напряжений применяют следующую формулу:

Низшее напряжение / Высшее напряжение х 100%.

ПУЭ и ГОСТы устанавливают нормы допустимого перекоса фаз, исходя из показателей токов и напряжений, которые не должны превышаться:

  • отношение между фазными токами (наибольшим и наименьшим) на щитках распределения – 30 %, на вводно-распределительных устройствах – 15%;
  • асимметрия напряжений обратной последовательности – 2%, нулевой последовательности – 4%.

От чего зависит симметрия напряжений

Симметрия напряжения системы между распредсетями и потребителями электроэнергии зависит от:

  • импеданса силовой цепи;
  • напряжений на выводах генератора;
  • тока, протекающего через приемники, сети передачи и распределения (распределение мощности в системе).

Напряжения на выходных контактах генераторов, как правило, симметричны из-за конструктивных особенностей и эксплуатационных характеристик синхронных машин, применяемых для выработки электроэнергии на электрических станциях. В случаях задействования асинхронных агрегатов, например, в ветряных установках, также получается симметричное трехфазное напряжение.

В локальных сетях генерации и распределения энергии, созданных со стороны потребителя, могут наблюдаться отличающиеся процессы. Многие из этих небольших блоков, например, фотоэлектрические элементы, подключенные к низковольтной сети силовой электроникой, имеют относительно высокий импеданс, что вызывает усиливающийся дисбаланс напряжения.

Сопротивление части энергосистемы неодинаково для отдельных фаз. Геометрическое расположение линий с асимметрией относительно земли вызывает различия и в их электрических параметрах. В целом, эти отклонения очень малы и могут быть незначительными при использовании превентивных мер.

Асимметрия на стороне нагрузки

Наиболее распространенными являются случаи перекоса фаз на стороне нагрузки. Приемниками, вызывающими асимметрию в сети, являются:

  • блоки однофазных нагрузок, подключенных к трехфазной, например, индукционные печи, сварочный трансформатор;
  • трехфазные приемники, работающие с периодической асимметрией (дуговые печи);
  • множество неравномерно распределенных однофазных нагрузок, включенных между фазными и нейтральными проводниками, например, у муниципальных потребителей в низковольтных сетях.

Асимметрия нагрузок по фазам

Важно! Неисправность системы также является причиной перекоса фаз. Распространенными случаями являются замыкания на землю, неисправности проводов. Такие дефекты вызывают падения напряжения в одной-двух фазах, что может способствовать перенапряжению в других фазах.

Последствия перекоса фаз:

  1. Снижение эксплуатационного срока электрооборудования;
  2. Увеличение энергопотребления;
  3. Нарушения в работе двигателей и генераторов, снижение их мощности;
  4. Возможность повреждения электроприборов и устройств.

Защитные методы

Существует несколько способов защиты низковольтных потребительских сетей от перекоса фазных напряжений. Первым способом является расчет нагрузочных токов и конструктивное планирование их с целью обеспечения равномерности распределения мощностей.

Нагрузки со стороны низкого напряжения, такие как бытовые электроприборы или осветительные сети, обычно однофазные, что затрудняет гарантию симметрии. При планировании электрической сети, содержащей такие типы электроприемников, отдельные схемы должны быть равномерно распределены между тремя фазами, например, одна фаза на этаж. Мерой по защите от перекоса фаз может служить и изменение рабочих параметров нагрузок в существующих сетях.

Важно! Несмотря на распределение, баланс нагрузок в центральном трансформаторе варьируется из-за изменения статистических циклов работы оборудования.

Другие защитные методы:

  1. Применение релейной аппаратуры, фиксирующей напряжение и автоматически срабатывающей на отключение при появлении асимметрии выше заданного показателя. При выравнивании значений напряжения подается сигнал на обратное включение;

Реле контроля напряжения

  1. Переустройство схемы фазных соединений при значительных изменениях характера нагрузки;
  2. Применение стабилизаторов напряжения, трансформаторов для симметрирования нагрузочных токов и другого оборудования.

Стабилизатор

Бытовое применение стабилизаторов предназначено для обеспечения неизменных показателей напряжения одной питающей фазы. Но они не влияют на перекос фаз в трехфазной сети. В промышленности применяют трехфазные устройства.

Стабилизатор напряжения

Основная функция аппарата – обеспечить выходное напряжение, питающее подсоединенные к нему устройства. Большинство стабилизаторов имеет электронные фильтры, целью которых является подавление шума и пикового напряжения. Стабилизатор защищает как от пониженного напряжения, так и от перенапряжения.

Симметрирующий трансформатор

Эти трехфазные устройства подключаются для питания потребительских электросетей и обладают рядом полезных функций:

  • симметрируют нагрузку в питающей сети, независимо от фазных токов электроприемников;
  • при подсоединении электрооборудования с мощным потреблением сглаживают просадку напряжения;
  • уменьшают потери электроэнергии.

Симметрирующие трансформаторы возможно использовать, как для питания трехфазной нагрузки, так и для создания однофазных схемных конфигураций. В случае наличия трехфазной системы без нейтрального проводника устройство преобразует ее в четырехпроводную систему с N-проводом.

Альтернативные способы устранения фазных перекосов – использование конденсаторных батарей с треугольным соединением, включение специальных трансформаторов с дополнительной нагрузкой в виде конденсатора и индуктивности и другие.

Видео

Сущность явления перекоса фаз

Перекос фаз довольно распространенное явление в неравномерно нагруженных трехфазных сетях. Практически все, кто так или иначе сталкивался с проблемами, связанными с потреблением электроэнергии, знают об этом нежелательном явлении. Перекос фаз проявляется в трехфазных четырех- (пяти-) проводных сетях с глухозаземленной нейтралью напряжением до 1000 В.

Рис. 1. Векторная диаграмма напряжений

В идеальном состоянии фазное напряжение (напряжение между каждой из трех фаз и нулевым рабочим проводником) составляет 220 В. Векторная диаграмма напряжений генератора (модель, отображающая взаимосвязь и взаиморасположение фазных и линейных напряжений) показана на рисунке 1.

Линейные напряжения образуют равносторонний треугольник с вершинами UA, UB, UC. Фазные напряжения 0A, 0B и 0C равны между собой и сдвинуты друг относительно друга на угол 120°. Данная модель является идеальной и перекос фазных напряжений в ней отсутствует.

При подключении на разные фазы нагрузок, которые всегда отличаются по величине и по характеру — резистивная и реактивная (индуктивная и емкостная), в питающей сети возникает перекос фазных напряжений. Помимо вреда, который наносит электроэнергия низкого качества непосредственно электрооборудованию / электроприборам, возникают уравнительные токи, вызывающие дополнительные затраты электроэнергии, и, соответственно, топлива, масла, охлаждающей жидкости при питании от генератора.

Рис. 2. Схема, иллюстрирующая условия возникновения перекоса фаз

RA, RB, RC — активные сопротивления нагрузок по фазам, причем RA > RB > RC ≠ 0.

Если бы сопротивления нагрузки были равны, то протекающие через них токи так же были равны между собой. Учитывая то, что угол сдвига между ними равен 120°, то их геометрическая сумма равнялась бы нулю.

Однако при их неравенстве в результате суммирования возникает ток I00′, который называется уравнительным и, следовательно, напряжение U00′, которое называется напряжением смещения.

Рис. 3. Напряжение смещения

Графически напряжение смещения показано на рисунке 3 белой сплошной линией. Оранжевыми линиями обозначены фазные напряжения, сдвинутые друг относительно друга на произвольный угол и отображающие перекос фаз. Треугольник на фоне иллюстрирует идеальную ситуацию без перекоса фазных напряжений.

Чем больше уравнительный ток, тем больше потери электроэнергии в Вашей сети. Чем больше напряжение смещения, тем выше риск повреждений, отключений, отказов, неустойчивой работы электрооборудования / электроприборов, генератора электроэнергии, тем быстрее они изнашиваются и тем больше потребляют ресурсов.

Последствия перекоса фаз

Последствия перекоса фаз проявляются в увеличении электропотребления от сети, в неправильной работе электрооборудования / электроприборов, их сбоях, отказах, отключениях, перегорании предохранителей, износе изоляции. Для трехфазных автономных источников неравномерность загрузки их фаз чревата механическими повреждениями подшипников валов, подшипниковых щитов генератора и приводного двигателя, закоксовыванию форсунок и т.д.

Условно негативные последствия перекоса фаз можно разделить на три группы:

1) последствия для электрооборудования / электроприборов, связанные с их повреждениями, отказами, увеличением износа, сокращением периода эксплуатации;

2) последствия для источников электроэнергии (увеличение износа, повреждения, увеличение энергопотребления при питании от сети; повышенный расход топлива, масла, охлаждающей жидкости при питании от генератора; повреждения генератора; уменьшение назначенного срока эксплуатации);

3) последствия для потребителей, связанные с безопасностью, так как ухудшение качества изоляции может привести к:

  • электротравматизму,
  • возгоранию электропроводки или электрооборудования / электроприборов,
  • короткому замыканию из-за повреждения изоляции,

а также последствия, связанные с увеличением затрат на:

  • электроэнергию;
  • расходные материалы для генератора;
  • ремонт электрооборудования / электроприборов, поврежденных вследствие перекоса фаз;
  • приобретение нового электрооборудования / электроприборов, отказавших вследствие перекоса фаз.

Традиционные способы решения проблем, связанных с электроэнергией низкого качества

Для обеспечения заданного напряжения на каждой из фаз традиционно используются стабилизаторы напряжения. В бытовых условиях применяют однофазные стабилизаторы напряжения, которые обеспечивают защиту отдельных электроприборов или их небольших групп. В промышленных условиях используются трехфазные стабилизаторы напряжения различной мощности, которые конструктивно состоят из трех однофазных стабилизаторов напряжения.

Принцип их действия таков, что они реагируют на отклонения на каждой отдельно взятой фазе и поднимают или опускают напряжение до необходимого уровня на своей фазе, провоцируя изменение напряжений на двух других фазах и являясь, таким образом, вторичной причиной возникновения перекоса фаз.

Из изложенного выше следует, что трехфазные стабилизаторы напряжения фактически не решают поставленную перед ними задачу, так как сами провоцируют несимметрию трехфазной системы. Помимо своего основного недостатка трехфазные стабилизаторы напряжения потребляют значительное количество электроэнергии и требуют значительных сервисных расходов, так как обладают низкой надежностью. И электромеханические, и электронные стабилизаторы напряжения имеют быстроизнашивающиеся и часто отказывающие детали.

Стабилизатор фаз (СФТСЗ)

Для решения задачи по устранению перекоса фаз и обеспечению заданного фазного напряжения необходимо использовать технологию, позволяющую выравнивать напряжение не на каждой из фаз по отдельности, а симметрировать фазы между собой, то есть симметрировать всю трехфазную систему. Такая технология может быть реализована на базе стабилизатора фаз, который обладает высокой эффективностью, малым потреблением электроэнергии и, при этом, обеспечивает существенное снижение потребления электроэнергии.

Стабилизатор фаз решает широкий спектр задач в части обеспечения устойчивой работы трехфазных сетей, повышения их энергоэффетивности и экономичности, а именно:

  • повышение качества электроэнергии за счет устранение перекоса напряжений (фаз) и фазных нагрузок;
  • снижение потребления электроэнергии и снижение соответствующих финансовых расходов;
  • защита источника питания (генератора) и потребителей электроэнергии от отказов, вызванных негативным влиянием перекоса напряжений (фаз) и фазных нагрузок;
  • предотвращение преждевременного выхода из строя источника питания (генератора), электрооборудования и электроприборов;
  • снижение затрат на ремонт, сервисное обслуживание и замену электрооборудования / электроприборов;
  • снижение затрат на топливо, масло, охлаждающую жидкость при питании сети потребителей от генератора;
  • снижение затрат на генератор, так как универсальный стабилизатор фаз позволяет использовать генератор меньшей мощности;
  • возможность подключения фазных потребителей мощностью до 50% трехфазной мощности.

Преимущества использования СФТСЗ

Экономичность:

Стабилизатор фаз обеспечивает:

  • снижение потребления электроэнергии при сохранении нагрузки;
  • снижение затрат на электроэнергию для питания электропотребителей;
  • снижение расхода электроэнергии и других ресурсов на обеспечение необходимой величины фазных напряжений;
  • снижение затрат на топливо, масло, охлаждающую жидкость при питании от генератора;
  • снижение затрат на генератор, т.к. такая технология позволяет использовать генератор меньшей мощности для той же группы электропотребителей;
  • снижение затрат на ремонт, сервисное обслуживание и замену электрооборудования / электроприборов, поврежденных вследствие перекоса фаз;
  • снижение затрат на ремонт, сервисное обслуживание, приобретение устройств, предназначенных для обеспечения заданной величины напряжения и обладающих низкой надежностью и низкой эффективностью;
  • возможность подключения фазных потребителей мощностью до 50% трехфазной мощности.

Диапазон изменения фазных напряжений

Представленная технология допускает 100%-ый перекос нагрузки и устраняет перекос фазных напряжений во всем диапазоне их изменения независимо от причины перекоса: (1) перекос в подводящей питающей сети, вызванный неисправностями в распределительной сети, (2) неравномерное распределение фазных нагрузок, (3) подключение мощного потребителя, (4) комбинированные причины.

На рисунке 4 показаны различные диапазоны перекоса фазных напряжений.

Рис. 4. Диапазон перекоса фазных напряжений

Прикладные задачи, решаемые с помощью применения представленной технологии:

  • Устранение перекоса фазных напряжений, т.е. выравнивание фаз сети друг относительно друга.
  • Равномерное распределение нагрузок по фазам.
  • Обеспечение заданной величины линейных напряжений.
  • Обеспечение заданной величины фазных напряжений.
  • Преобразование трехфазной трехпроводной сети в трехфазную четырехпроводную (т.е. формирование нулевого рабочего проводника для возможности подключения фазной нагрузки).
  • Преобразование трехфазной сети в однофазную или двухфазную:
  • с гальванической развязкой,
  • без гальванической развязки питающей сети и потребителя,
  • с изменением (увеличением или уменьшением) выходного напряжения.

Ниже на рисунках представлены варианты подключения нагрузки без использования представленной технологии и с использованием представленной технологии.

Рис. 5. Подключение нагрузки напрямую к сети. Максимальная нагрузка на одну фазу составляет треть от трехфазной мощности источника электроэнергии

Подключение мощного однофазного электроприемника вызывает перекос фаз и повышает риск его повреждений и повреждений других электроприемников. Если мощность такого фазного потребителя превышает треть трехфазной мощности, это вызывает его неправильную работу (сбой, отключение, отказ).

Рис. 6. Подключение более мощной нагрузки к тому же (см. рис. 4) источнику электроэнергии с использованием представленной технологии

Максимальная нагрузка на одну фазу может составлять 50% от трехфазной мощности источника электроэнергии. Источник электроэнергии воспринимает нагрузку как равномерно распределенную по фазам.

Рис. 7. Подключение той же нагрузки (см. рис. 4) к генератору меньшей мощности с использованием представленной технологии

Представленная технология позволяет подключать ту же группу электроприемников к генератору электроэнергии меньшей мощности, при этом источник электроэнергии будет воспринимать нагрузку как равномерно распределенную по фазам.

Оборудование, производимое на основе данной технологии, сертифицировано и соответствует ТУ.

Результат повышения энергоэффективности при массовом внедрении

Массовое внедрение такой технологии позволит более рационально использовать электроэнергию, снизить ее потери; обеспечивать тех же потребителей (группы электроприемников) меньшим количеством электроэнергии; снизить затраты на электроэнергию, затраты на топливо, масло, охлаждающую жидкость при питании от генератора; продлить срок службы электроприемников, уменьшить их износ, обеспечить безотказную работу электроприемников; снизить расходы на источники электроэнергии, так как для той же группы электроприемников возможно использование генератора меньшей мощности.

Под потерей фазы понимают однофазный режим работы электродвигателя в результате обрыва питания по одному из проводов трехфазной системы. Причиной этому могут служить срабатывание одного из предохранителей, отсутствие контакта в одной фазе, обрыв провода и т.д.

Обрыв фазы может произойти в разных режимах работы электродвигателя, что приведет к разным последствиям, сопутствующим данный режим. Оценивая последние, необходимо также учитывать соединение обмоток электродвигателя («звезда” или «треугольник”), его рабочее состояние (до или после запуска), степень загрузки в момент потери фазы, число электродвигателей, работающих в аварийном режиме.

Стоит обратить внимание на особенности такого аварийного режима. В трехфазном режиме каждая обмотка обтекается током, сдвинутым во времени на треть периода. При потере фазы получаем однофазный режим работы, так как в одной обмотке ток отсутствует, а две другие обмотки обтекаются одним и тем же током.

Магнитное поле, образованное однофазным током является пульсирующим, в отличие от вращающегося в трехфазной системе. Вектор магнитного потока не вращается, а лишь изменяется по величине и знаку рис.1а.

Рис.1. Характеристики асинхронного электродвигателя в однофазном режиме:
а) графическое изображение пульсирующего магнитного поля;
б) разложение пульсирующего поля на два вращающихся;
в) механические характеристики асинхронного электродвигателя в трехфазном (1) и однофазном (2) режимах работы.

Пульсирующее магнитное поле можно рассматривать как два вращающихся навстречу друг другу равных по величине поля (рис. 1, б). Каждое поле взаимодействует с ротором и образует свой вращающий момент. Их суммарное действие создает вращающий момент на валу электродвигателя.

Варианты пропадания фазы

Обрыв произошел до включения электродвигателя в сеть. Вал электродвигателя при пуске в однофазном режиме не может провернуться даже при отсутствии нагрузки. Это результат того, что на него действуют два магнитных поля, образующих два противоположных по знаку, но равных по величине момента.

Обрыв произошел во время работы электродвигателя. При этом на его валу образуется вращающий момент, что объясняется разным взаимодействием с вращающимися навстречу друг другу полями. В отличие от случая с неподвижным ротором, эти моменты будут разными по величине, а их разность будет равна моменту на валу электродвигателя. Поэтому, если фаза пропала во время работы электродвигателя, когда его скорость была близка к номинальной, вращающий момент часто бывает достаточным для продолжения работы, но наблюдается небольшое снижение скорости и появление характерного гудения. В остальном внешние проявления аварийного режима не наблюдаются.

Данные режимы представлены на рис.1в, где видим, что при нулевой скорости момент равен нулю, а при появлении вращения в любую сторону на валу электродвигателя возникает момент.

Переход электродвигателя в однофазный режим сопровождается перераспределением токов и напряжений между фазами.

Если обмотки электродвигателя были соединены по схеме «звезда”, то после обрыва фазы две последовательно соединенные обмотки оказываются включенными на линейное напряжение UAB и электродвигатель при этом оказывается в однофазном режиме работы.

Рис.2. Соединение обмоток электродвигателя по схеме «звезда» после потери фазы

При потере фазы пусковой ток составляет 87% от величины пускового тока при трехфазном питании. Учитывая то, что пусковой ток асинхронного к.з. электродвигателя в 6 — 7 раз больше номинального, получаем:

I1ф = 0,87 х 6 = 5,00 Iн ;

то есть по обмоткам электродвигателя протекает ток, примерно в пять раз превышающий номинальный. За короткое время обмотка электродвигателя перегреется. Такой режим работы опасен для электродвигателя и в случае его возникновения защита должна сработать с незначительной выдержкой времени.

Токи и напряжения обмоток электродвигателя при потере фазы
после запуска электродвигателя

Как в трехфазном, так и однофазном режимах работы электродвигатель должен развивать одинаковую мощность, необходимую для выполнения технологического процесса. Ток при обрыве фазы возрастает почти вдвое.

На степень опасности однофазного режима работы влияет и загрузка электродвигателя. Приняв, что ток электродвигателя в трехфазном режиме пропорциональный его нагрузке на валу (справедливо при нагрузках более 50% номинального), получаем:

Iф ≈ Кз х Iн ,

где Кз — коэффициент загрузки электродвигателя, Iн — номинальный ток электродвигателя.

Ток при однофазном режиме Iф ≈ 2Кз х Iн. При нагрузке менее 50% потеря фазы при соединении обмоток электродвигателя в «звезду» не создает опасного для обмоток превышения тока. В большинстве случаев коэффициент загрузки электродвигателя меньше единицы. При его значениях порядка 0,6 — 0,75 следует ожидать небольшого превышения тока (на 20 — 50%) по сравнению с номинальным. Для безопасной работы электродвигателей необходимо обеспечить защиту от таких перегрузок.

Если обмотки электродвигателя были соединены по схеме «треугольник”, то после потери фазы мы будем иметь схему соединений, показанную на рис.3. При этом обмотка электродвигателя ZAB оказывается включенной на линейное напряжение UAB, а обмотки ZAC и ZBC — соединены последовательно и включены на то же линейное напряжение.

Рис.3. Соединение обмоток электродвигателя по схеме «треугольник» после потери фазы

В пусковом режиме по обмотке АВ будет протекать такой же ток, как и при трехфазном варианте, а по обмоткам АС и ВС будет протекать ток в два раза меньший, так как эти обмотки соединены последовательно.

Часто обрыв фазы происходит из-за перегорания предохранителей одной из фазы питающей подстанции или распределительного устройства. При этом в однофазном режиме может оказаться группа электродвигателей взаимно влияющих друг на друга. Распределение токов зависит от мощности отдельных электродвигателей и их загрузки. Здесь возможны различные варианты.

Оставьте комментарий