Преобразование потенциальной энергии в кинетическую

Силы, работа которых не зависит от формы траектории, а определяется начальным и конечным положением тела, называются потенциальными. Очевидно, что работа потенциальных сил на замкнутой траектории равна нулю.

Все силы, работа которых зависит от формы траектории, называются непотенциальными. Непотенциальными силами являются силы трения, сопротивления.

Для системы тел, в которой действуют потенциальные силы взаимодействия, можно ввести понятие потенциальной энергии.

Потенциальная энергия — некоторая функция, описывающая взаимное расположение тел в системе, изменение которой взятое с обратным знаком, равно работе потенциальных сил, действующих между телами ситемы или же это энергия взаимного действия, взаимного расположения тел относительно друг друга:


Пример.
При прыжке ныряльщика в воду потенциальная сила притяжения совершает работу, которая равна изменению потенциальной энергии ныряльщика. Эта работа идет на изменение кинетической энергии прыгуна.

    Свойства потенциальной энергии:

  • это энергия системы тел, между которыми действуют потенциальные силы взаимодействия;
  • потенциальная энергия определяется с точностью до постоянного слагаемого. При этом за нулевой уровень потенциальной энергии можно принять любое состояние системы;
  • формула для расчета потенциальной энергии может быть разной и зависит от характера взаимодействия тел; общим для всех видов потенциальной энергии является ее связь с работой потенциальных сил:
    A=Epсил=-(Ep1-Ep2)

Кинетическая энергия — энергия движения. Работа силы, приложенной к телу при изменении его V, равна изменению кинетической энергии:

Закон сохранения энергии.
Приращение потенциальной энергии брошенного вверх тела происходит за счет убыли его кинетической энергии; при падении тела, приращение кинетической энергии происходит за счет убыли потенциальной энергии, так что полная механическая энергия тела не меняется. Аналогично, если на тело действует сжатая пружина, то она может сообщить телу некоторую скорость,
т. е. кинетическую энергию, но при этом пружина будет распрямляться, и ее потенциальная энергия будет соответственно уменьшаться; сумма потенциальной и кинетической энергий останется постоянной. Если на тело, кроме пружины, действует еще и сила тяжести, то хотя при движении тела энергия каждого вида будет изменяться, но сумма потенциальной энергии тяготения, потенциальной энергии пружины и кинетической энергии тела опять-таки будет оставаться постоянной.

Энергия может переходить из одного вида в другой, может переходить от одного тела к другому, но общий запас механической энергии остаётся неизменным. Опыты и теоретические расчеты показывают, что при отсутствии сил трения и при воздействии только сил упругости и тяготения суммарная потенциальная и кинетическая энергия тела или системы тел остается во всех случаях постоянной. В этом и заключается закон сохранения механической энергии.

Докажем закон сохранения энергии в следующем опыте. Стальной шарик, упавший с некоторой высоты на стальную или стеклянную плиту и ударившийся об неё, подскакивает почти на ту же высоту, с которой упал. Во время движения шарика происходит целый ряд превращений энергии. При падении потенциальная энергия переходит в кинетическую энергию шарика. Когда шарик прикоснется к плите, и он и плита начинают деформироваться.

Если рассмотреть кинетическую энергию, то можно сделать вывод, что она превращается в потенциальную энергию упругой деформации шарика и плиты, причем этот процесс продолжается до тех пор, пока шарик не остановится, т. е. пока вся его кинетическая энергия не перейдёт в потенциальную энергию упругой деформации. Затем под действием сил упругости деформированной плиты шарик приобретает скорость, направленную вверх: энергия упругой деформации плиты и шарика превращается в кинетическую энергию шарика. При дальнейшем движении вверх скорость шарика под действием силы тяжести уменьшается, и кинетическая энергия превращается в потенциальную энергию тяготения. В наивысшей точке шарик обладает снова только потенциальной энергией тяготения.

Поскольку можно считать, что шарик поднялся на ту же высоту, с которой он начал падать, потенциальная энергия шарика в начале и в конце описанного процесса одна и та же. Более, того, в любой момент времени при всех превращениях энергии сумма потенциальной энергии тяготения, потенциальной энергии упругой деформации и кинетической энергии все время остается одной и той же.

Для процесса превращения потенциальной энергии, обусловленной силой тяжести, в кинетическую и обратно при падении и подъеме шарика это было показано простым расчетом. Можно было бы убедиться, что и при превращении кинетической энергии в потенциальную энергию упругой деформации плиты и шарика и затем при обратном процессе превращения этой энергии в кинетическую энергию отскакивающего шарика сумма потенциальной энергии тяготения, энергии упругой деформации и кинетической энергии также остается неизменной, т. е. закон сохранения механической энергии выполнен.

Теперь мы можем объяснить, почему нарушался закон сохранения работы в простой машине, которая деформировалась при передаче работы: дело в том, что работа, затраченная на одном конце машины, частично или полностью затрачивалась на деформацию самой простой машины (рычага, веревки и т.д.), создавая в ней некоторую потенциальную энергию деформации, и лишь остаток работы передавался на другой конец машины. В сумме же переданная работа вместе с энергией деформации оказывается равной затраченной работе. В случае абсолютной жесткости рычага, нерастяжимости веревки и т. д. простая машина не может накопить в себе энергию, и вся работа, произведенная на одном ее конце, полностью передается на другой конец.

Силы трения и закон сохранения механической энергии.
Присматриваясь к движению шарика, подпрыгивающего на плите, можно обнаружить, что после каждого удара шарик поднимается на несколько меньшую высоту, чем раньше, т. е. полная энергия не остается в точности постоянной, а понемногу убывает; это значит, что закон сохранения энергии в таком виде, как мы его сформулировали, соблюдается в этом случае только приближённо. Причина заключается в том, что в этом опыте возникают силы трения, сопротивление воздуха, в котором движется шарик, и внутреннее трение в самом материале шарика и плиты. Вообще, при наличии трения закон сохранения механической энергии всегда нарушается и полная энергия тел уменьшается. За счет этой убыли энергии и совершается работа против сил трения. Например, при падении тела с большой высоты скорость, вследствие действия возрастающих сил сопротивления среды, вскоре становится постоянной; кинетическая энергия тела перестает меняться, но его потенциальная энергия уменьшается.

Работу против силы сопротивления воздуха совершает сила тяжести за счет потенциальной, энергии тела. Хотя при этом и сообщается некоторая кинетическая энергия окружающему воздуху, но она меньше, чем убыль потенциальной энергии тела, и, значит, суммарная механическая энергия убывает. Работа против сил трения может совершаться и за счет кинетической энергии. Например, при движении лодки, которую оттолкнули от берега пруда, потенциальная энергия лодки остается постоянной, но вследствие сопротивления воды уменьшается скорость движения лодки, т. е. ее кинетическая энергия, приращение кинетической энергии воды, наблюдающееся при этом, меньше, чем убыль кинетической энергии лодки.

Подобно этому действуют и силы трения между твердыми телами. Например, скорость, которую приобретает груз, соскальзывающий с наклонной плоскости, а, следовательно, и его кинетическая энергия, меньше той, которую он приобрёл бы в отсутствие трения. Можно так подобрать угол наклона плоскости, что груз будет скользить равномерно. При этом его потенциальная энергия будет убывать, а кинетическая — оставаться постоянной, и работа против сил трения будет совершаться за счет потенциальной энергии.

В природе все движения (за исключением движений в вакууме, например, движений небесных тел) сопровождаются трением. Поэтому при таких движениях закон сохранения механической энергии нарушается, и это нарушение происходит всегда в одну сторону — в сторону уменьшения полной энергии.

Превращение механической энергии во внутреннюю энергию.
Особенность сил трения состоит, как мы видели, в том, что работа, совершённая против сил трения, не переходит полностью в кинетическую или потенциальную энергию тел; вследствие этого суммарная механическая энергия тел уменьшается. Однако работа против сил трения не исчезает бесследно. Прежде всего, движение тел при наличия трения ведет к их нагреванию. Мы можем легко обнаружить это, крепко потирая руки или протягивая металлическую полоску между сжимающими ее двумя кусками дерева; полоска даже на ощупь заметно нагревается. Первобытные люди, как известно, добывали огонь быстрым трением сухих кусков дерева друг о друга. Нагревание происходит также при совершении работы против сил внутреннего трения, например, при многократном изгибании проволоки. Нагревание при движении, связанном с преодолением сил трения, часто бывает очень сильным. Например, при торможении поезда тормозные колодки сильно нагреваются. При спуске корабля со стапелей на воду для уменьшения трения стапеля обильно смазываются, и все же нагревание так велико, что смазка дымится, а иногда даже загорается.

При движении тел в воздухе с небольшими скоростями, например, при движении брошенного камня, сопротивление воздуха невелико, на преодоление сил трения затрачивается небольшая работа, и камень практически не нагревается. Но быстро летящая пуля разогревается значительно сильнее. При больших скоростях реактивных самолетов приходится уже принимать специальные меры для уменьшения нагревания обшивки самолета. Мелкие метеориты, влетающие с огромными скоростями (десятки километров в секунду) в атмосферу Земли, испытывают такую большую силу сопротивления среды, что полностью сгорают в атмосфере. Нагревание в атмосфере искусственного спутника Земли, возвращающегося на Землю, так велико, что на нем приходится устанавливать специальную тепловую защиту.

Кроме нагревания, трущиеся тела могут испытывать и другие изменения. Например, они могут измельчаться, растираться в пыль, может происходить плавление, т. е. переход тел из твердого в жидкое состояние: кусок льда может расплавиться в результате трения о другой кусок льда или о какое-либо иное тело.

    Итак, если движение тел связано с преодолением сил трения, то оно сопровождается двумя явлениями:

  • сумма кинетической и потенциальной энергий всех участвующих в движении тел уменьшается;
  • происходит изменение состояния тел, в частности может происходить нагревание.

Это изменение состояния тел происходит всегда таким образом, что в новом состоянии тела могут производить большую работу, чем в исходном. Так, например, если налить в закрытую с одного конца металлическую трубку немного эфира и, заткнув трубку пробкой, зажать ее между двумя пластинками и привести в быстрое вращение, то эфир испарится и вытолкнет пробку. Значит, в результате работы по преодолению сил трения трубки о пластинки трубка с эфиром пришла в новое состояние, в котором она смогла совершить работу, требующуюся для выталкивания пробки, т. е. работу против сил трения, удерживающих пробку в трубке, и работу, идущую на сообщение пробке кинетической энергии. В исходном состоянии трубка с эфиром не могла совершить эту работу.

Таким образом, нагревание тел, равно как и другие изменения, их состояния, сопровождается изменением «запаса» способности этих тел совершать работу. Мы видим, что «запас работоспособности» зависит, помимо положения тел относительно Земли, помимо их деформации и их скорости, еще и от состояния тел.

Значит, помимо потенциальной энергии тяготения и упругости и кинетической энергии тело обладает и энергией, зависящей, от его состояния. Будем называть ее внутренней энергией. Внутренняя энергия тела зависит от его температуры, от того, является ли тело твердым, жидким или газообразным, как велика его поверхность, является ли оно сплошным или мелко раздробленным и т. д. В частности, чем температура тела выше, тем больше его внутренняя энергия. Таким образом, хотя при движениях, связанных с преодолением сил трения, механическая энергия систем движущихся тел уменьшается, но зато возрастает их внутренняя энергия. Например, при торможении поезда уменьшение его кинетической энергии сопровождается увеличением внутренней энергии тормозных колодок, бандаж колес, рельсов, окружающего воздуха и т. д. в результат нагревания этих тел. Все сказанное относится также и к тем случаям, когда силы трения возникают внутри тела, например, при разминании куска воска, при неупругом ударе свинцовых шаров, при перегибании куска проволоки.

Всеобщий характер закона сохранения энергии.
Силы трения занимают особое положение в вопросе о законе сохранения механической энергии. Если сил трения нет, то закон сохранения механической энергии соблюдается: полная механическая энергия системы остается постоянной. Если же действуют силы трения, то энергия уже не остается постоянной, а убывает при движении. Но при этом всегда растет внутренняя энергия.

С развитием физики обнаруживались все новые виды энергии: была обнаружена световая энергия, энергия электромагнитных волн, химическая энергия, проявляющаяся при химических реакциях (в качестве примера достаточно указать хотя бы на химическую энергию, запасённую во взрывчатых веществах и превращающуюся в механическую и тепловую энергию при взрыве), наконец, была открыта ядерная энергия. Оказалось, что совершаемая над телом работа равна сумме всех видов энергии тела; работа же, совершаемая некоторым телом над другими телами, равна убыли суммарной энергии данного тела. Для всех видов энергии оказалось, что возможен переход энергии из одного вида в другой, переход энергии от одного тела к другому, но что при всех таких переходах общая энергия всех видов остаётся все время строго постоянной. В этом заключается всеобщность закона сохранения энергии.

Хотя общее количество энергии остается постоянным, количество полезной для нас энергии может уменьшаться и в действительности постоянно уменьшается. Переход энергии в другую форму может означать переход ее в бесполезную для нас форму. В механике чаще всего это — нагревание окружающей среды, трущихся поверхностей и т. п. Такие потери не только невыгодны, но и вредно отзываются на самих механизмах; так, во избежание перегревания приходится специально охлаждать трущиеся части механизмов.

У всех видов энергии есть общее свойство: энергия ниоткуда не возникает и никуда не исчезает; она лишь переходит из одного вида в другой или от одного тела к другому. Это утверждение называется законом сохранения энергии. Пока мы изучим его качественно, поскольку количественный аспект рассматривается в старших классах.

Колебания нитяного маятника. На рисунке слева вы видите груз, качающийся на нити. Сначала его оттянули вправо, и он приподнялся на высоту h над своим нижним положением. В этот момент груз имел наибольшую потенциальную энергию под действием силы тяжести.

Когда груз отпустили, он начал двигаться влево, увеличивая скорость. Следовательно, кинетическая энергия груза возрастает. Одновременно груз опускается, и в среднем положении его потенциальная энергия становится наименьшей. Однако в этот момент скорость груза является наибольшей. Поэтому за счёт запаса кинетической энергии, продолжая двигаться влево, груз поднимается всё выше. Это приводит к возрастанию его потенциальной энергии. Одновременно скорость груза уменьшается, что вызывает уменьшение кинетической энергии.

В этом примере энергия одного и того же тела переходит из одного вида в другой: из кинетической энергии в потенциальную и наоборот. Рассмотрим теперь примеры, когда энергия переходит не только из одного вида в другой, но и от одного тела к другому.

Колебания пружинного маятника. Взгляните на рисунок. Сначала груз на пружине оттянули вниз. Пружина растянулась, следовательно, сила упругости возросла. Увеличение этой силы означает увеличение потенциальной энергии пружины.

После отпускания груза пружина сжимается. По мере её сжатия сила упругости пружины уменьшается, значит, уменьшается потенциальная энергия пружины. Однако одновременно возрастает кинетическая энергия груза, так как при разгоне вверх увеличивается его скорость. Одновременно возрастает потенциальная энергия груза под действием силы тяжести, так как груз поднимается выше. Эти превращения энергии из одного вида в другой и переходы от тела к телу происходят периодически.

В только что рассмотренном примере энергия переходила из одного вида в другие: из потенциальной под действием силы упругости в кинетическую, а также в потенциальную под действием силы тяжести, и наоборот. Кроме того, энергия переходила от одного тела к другому: от пружины к грузу, и наоборот.

Торможение тела силой трения. На правом рисунке сверху изображено колесо едущего поезда; снизу – то же колесо, но при торможении поезда: тормозные колодки прижались к колесу. Возникшая сила трения замедляет вращение колёс, а значит, и скорость поезда. Это приводит к уменьшению его кинетической энергии. Колодки и колесо в нижней части рисунка не случайно выделены красным цветом: они настолько сильно нагреваются из-за трения, что при касании рукой можно получить ожог.

В этом примере мы наблюдали превращение механической энергии во внутреннюю энергию: кинетическая энергия всего поезда превращалась во внутреннюю энергию его тормозных колодок, колёс и воздуха, который тоже нагревался (соприкасаясь с горячими колёсами и тормозными колодками).

Итак, все рассмотренные в этом параграфе примеры являются качественными подтверждениями всеобщего закона сохранения энергии, который иногда называют законом сохранения и превращения энергии.

Известный российский ученый А.О. Шахинов сказал о нем: «Это изобретение очень актуально для нашего XXI века. Так в свое время, когда была изобретена гидроэлектростанция, случился переворот, можно было получать энергию, не затрачивая на это ресурсов и так уже истощившегося запаса полезных ископаемых земного шара».
Устройство производит электроэнергию буквально из воздуха. Такой преобразователь энергии особенно подходит для больших современных городов.
Это не гидроэлектростанция, для которой обязательно требуется река.
Это не приливно/отливная станция, для которой обязательно требуется море или озеро. И это не ветряные электростанции, которые работают только в том случае, если есть ветер. Наш преобразователь энергии действует в любом современном городе и не зависит от воды, ветра, прилива или отлива.
Суть изобретения: специальные встраиваемые панели в дороги города.
При совершении наезда любым видом транспорта на такую панель вырабатывается энергия. Причем вырабатывается очень большое количество энергии. Обратите внимание на то, что если поставить такую панель на оживленном шоссе, то энергия будет поступать бесконечно.
По подсчетам наших специалистов, два таких устройства смогут питать круглые сутки большой 9-этажный 108-квартирный дом! Заметьте, что никаких затрат, кроме первоначальной покупки и установки преобразователя, не требуется. Такой дом не будет зависеть ни от каких электростанций, кроме своей собственной — локальной.
При постройке новых домов можно добавлять в проект наш преобразователь. И спрос на такое жилье будет поистине большим. Ведь кому хочется покупать квартиру, за электроэнергию в которой постоянно надо платить, — если можно купить жилье, в котором можно жить и не переживать за повышение цен на электроэнергию. Энергия в таких домах будет совершенно бесплатна.
Но не только жилые дома могут черпать энергию из преобразователя. Ведь везде существуют предприятия, которые нуждаются в постоянном источнике электропитания.
Вот один из вариантов. Если в аэропорту поставить пару преобразователей, то аэропорт не будет нуждаться в подводке проводов от других электростанций, которые расположены, как всегда, совсем не рядом. Помимо того, что не будет лишних затрат на километры проводов, не будет и надобности оплачивать бесконечное количество счетов от электростанций, которые отнимают значительную часть прибыли. Такой аэропорт сможет забыть про квитанции об оплате электроэнергии. В них отпадет надобность.
Возьмем город в целом. Если вдоль главной трассы поставить 100 таких устройств, то такая дорога будет питать весь город. Значительно улучшатся экологические показатели. А громоздкие сооружения в виде страшных дымящих труб исчезнут.
То есть это — экологически чистый, безопасный и бесплатный способ выработки энергии.
Преобразователь представляет собой редуктор с накопителем энергии — маховиком, который раскручивается за счет поступательного движения толкателя и поворота зубчатого сектора привода. Толкатель вертикально утапливается шарнирным соединением двух металлических площадок на всю ширину проезжей части, имеющих оптимальную длину по 20 метров в обе стороны от шарнира, причем верхняя точка шарнира от плоскости дорожного покрытия находится на высоте 0,5 метра.
Транспортное средство, двигаясь по площадкам, утапливает толкатель через шарнир, раскручивая маховик — накопитель энергии.
После прохождения транспортного средства по площадкам последние возвращаются в исходное положение простейшим механизмом возврата.
Таким образом преобразователь использует вторичный источник энергии, первичный (нефть, газ, уголь) уже затрачен на движение транспортного средства, при этом электрические транспортные средства можно перевести на непосредственное питание от преобразователей, установленных на маршрутах движения.
Проект готов к реализации, причем организация проекта осуществляется на базе любого машиностроительного предприятия и не изменяет принципиально и по существу действующую на нем организацию производства.
Преобразователь содержит силовой блок, включающий кинематически связанные между собой грузовой и уравнивающий механизмы и вал потребителя энергии. Грузовой механизм выполнен в виде двух подвижных шарнирно-соединенных между собой платформ. Платформы установлены своими опорными сторонами с возможностью возвратно-поступательного движения опорных сторон по направлению продольной оси дороги. Платформы являются частью проезжей части дороги. Ось шарнирного соединения платформ ориентирована параллельно опорным сторонам платформ и перпендикулярно продольной оси дороги.
Уравновешивающий механизм выполнен в виде механизма возврата, который содержит по меньшей мере два кронштейна, размещенных по обе стороны дороги, по меньшей мере два блока, размещенных на кронштейнах, по меньшей мере два груза и по меньшей мере два троса, каждый из которых одним своим концом через блок соединен с одним из грузов, а вторым — с грузовым механизмом непосредственно у шарнирного соединения. Кинематическая связь грузового механизма с валом потребителя энергии осуществляется посредством силового привода.
Силовой привод содержит толкатель, шатун, зубчатый сектор, храповой механизм с ведущей и ведомой шестернями, ведущую шестерню вала потребителя энергии и ведомую шестерню вала потребителя энергии, жестко соединенную с этим валом.
В 1998 году его для нас оценила оценочная компания (опытный образец) — 48 тыс. дол. Но это без вмонтирования устройства в дорогу.
С вмонтированием оного в дорогу получится примерно вдвое больше, т.е. около 100 тыс. дол.
Период окупаемости проекта — 1 год.

Оставьте комментарий