Расчет балки

«Балкомплект» предлагает современные, высокотехнологичные и качественные материалы для малоэтажного домостроения – деревянные двутавровые балки из LVL бруса Ultralam и всевозможные виды крепежа от крупнейшего европейского производителя Rotoblaas, для реализации практически любых задумок и проектов.
Для того, чтобы правильно рассчитать какой тип балки необходимо использовать в каждом конкретном случае и как правильно спроектировать крепежное соединение, требуется провести предварительные расчеты. Партнеры компании «Балкомплект» разработали специальные программы для таких расчетов, доступные для скачивания по ссылкам.

Балкомплект-балка 1.0.2 – программа позволяет проверить балку по максимальному изгибающему моменту, по максимальной поперечной силе, по прогибам, на возможность бокового выгиба. При помощи этой программы возможно произвести расчет учитывая любое количество пролетов, различные условия опирания концов балки, произвольный наклон балки, необходимые отверстия. Также существует возможность применения шаблонов для быстрого расчета, редактирования сортамента сечений. В результате обработки данных программа выдает подробный отчет, который может быть использован в качестве рекомендации к выбору той или иной балки. Все системы расчета основаны на существующих стандартах проектирования и расчета деревянных и клееных конструкций.

Ультралам-балка 2.0.2 – проверка по прогибам, устойчивости плоской формы деформирования, по максимальной поперечной силе, по изгибающему моменту. При правильно проведенных расчетах достигается оптимальная прочность и жесткость балки. В результате обработки данных программа выдает подробный отчет, который может быть использован в качестве рекомендации к выбору той или иной балки. Все системы расчета основаны на существующих стандартах проектирования и расчета деревянных и клееных конструкций.

Myproject 3.0 – идеальный помощник от компании Rotoblaas при проектировании различных видов крепежных соединений – соединение на срез шурупами HBS, соединение потайными скобами ALU, постоянное крепление изоляции шурупами DGZ, усиление конструкций шурупами с полной резьбой, соединение между основной и вспомогательной балкой, соединение шпильками-саморезами. Возможен расчет различных конфигураций путем варьирования количества и типов крепежа, изменения наклона, размеров и видов используемого материала, для того чтобы повысить механическую прочность. Скачать руководство пользователя программы Myproject 3.0 можно здесь.

В целях установки балочных перекрытий используется опора – особый тип крепежа. Он фиксируется к двум основам сразу, поэтому нормально выдерживает внушительный вес. Типы, которые можно встретить в продаже – открытый и закрытый. Открытые встречаются чаще, используются в ходе создания соединительных узловых элементов стропил, подстропил в деревянных постройках разного назначения. Несущая способность опоры бруса должна быть рассчитана правильно до начала проведения работ, поскольку от этого зависит надежность и долговечность готового решения. О том, как производятся расчеты, какие особенности имеют рассматриваемые конструкции, мы расскажем далее. Обратите внимание, что есть два способа узнать интересующие данные – теоретический (формульный) и практический.

Конструкции: особенности

Опоры открытого типа не требуют врезки в деревянное основание, что существенно увеличивает их жесткость. Закрытые предполагают врезку, выглядят более эстетично, поэтому задействуются в открытых местах, где важны привлекательные визуальные качества. Выбор делается на основании ширины основы – это не трудно, поскольку в продаже представлены разные варианты. Крепеж позволяет фиксировать балки на поверхностях из бетона, дерева.

Для удобного крепления в раскрытом виде к поверхностям из дерева производители предусматривают отверстия около 5 мм в диаметре. С учетом технической прочности для фиксации рекомендуется применять шурупы, гвозди с рифлеными поверхностями. Диаметр отверстий составляет 9 либо 11 мм. В качестве крепежей применяются анкеры, шурупы, обычные гвозди. Соединение, которое получится в итоге, будет надежным и долговечным.

Раскрытые опоры брусьев получают путем холодной штамповки с применением стали – оптимального с точки зрения технических характеристик, стоимости материала. Марки, используемые для изготовления крепежей – 08пс, 08Ю. Готовые изделия получаются прочными, имеют высокие характеристики несущей способности. Для увеличения рабочего ресурса раскрытых опор сталь цинкуют – покрытие защищает от коррозии, других негативных внешних воздействий. Цинкование делается горячим способом с применением белого цинка, в который вводятся включения свинца и алюминия. Покрытие предотвращает негативные внешние атмосферные воздействия, обеспечивает изделию привлекательные эстетические характеристики.

За счет наличия на лепестках разноразмерных отверстий крепление получается максимально универсальным, простым и удобным в применении. Выбор метизов нужно делать с учетом оказываемого давления на брус, который устанавливается, его прочности. Габариты опорных частей тоже нужно учитывать – они подходят для крепления малых и больших изделий. Если фиксация осуществляется под острым углом, удобно будет использовать сделанные под различными углами крепежные углы, пластины. Некоторые варианты идут с дополнительными ребрами жесткости.

Почему важно знать несущую способность

Под рассматриваемым понятием подразумевается максимально допустимое рабочее давление, которое могут переносить перекрытия, балки, стены, сваи, фундаменты зданий. Выдерживать не просто, а, не утрачивая функциональности, не деформируясь. Если превысить максимальные цифры, конструкция начнет разрушаться.

В ходе проектирования зданий нагрузки измеряются отдельно для всех элементов будущей постройки, почв, где планируется строительство.

Особенности расчетов:

  1. Почвы – предельно допустимые показатели, на которые рассчитаны почвы. Сопротивление зависит от плотности, уровня влажности, других показателей. Например, чем более плотной является почва, тем ниже в ней содержание воздуха, и выше получится стойкость к деформациям. Сильная влажность, напротив, уменьшает рассматриваемый показатель – исключение составляют не пучинистые грунты с щебнем, песком.
  2. Свай – в данном случае рассчитываются предельные цифры, которые может «тянуть» уже забитая в грунт свая. Способы подсчетов – теоретические, пробные статистические, зондирование специальными датчиками, динамические нагрузки. Как и для грунта, для свай определенные требования к расчетам прописаны в СНиП.
  3. Для фундамента – параметр определяет максимум, выдерживаемый основанием дома без деформации и разрушений. Учтите, что после завершения строительных работ дому потребуется время на усадку – сжатие и трамбовку под собственным весом. Итоговый результат для зданий зависит от конструктивных особенностей конкретного объекта, массы стройматериалов, погоды, модели кровли, ее вида, климатических условий. Берутся во внимание давление ветра, общий вес постройки, масса снегового настила (с учетом климатических условий конкретного региона).

Принципы проведения расчетов

Просчеты выполняйте до начала строительства. Важно учитывать величину прогиба в ходе вычислений. Проводите математический анализ полного набора данных – иначе вы просто не сможете построить дом, либо пострадают его эксплуатационные характеристики. Замерьте пролет, который предстоит перекрыть балками, правильно выберите тип, метод крепления. Важно рассчитать, как глубоко фиксаторы будут входить в стену. Только когда вы определитесь с данными параметрами, можно выполнять остальные вычисления.

Для каждой деревянной доски нужно измерить длину – она равна пролету. Если вы планируете стеновую заделку, этот момент также учитывается. Многое решает сырье, используемое в ходе строительства – в кирпич делается загонка в гнезда на 10 см или больше, для дерева будет достаточно 7 см. Длина бревен/досок при использовании в процессе монтажа кронштейнов, хомутных элементов будет равняться проему. То есть вам нужно замерить удаление одной стены от второй, а потом рассчитать предельно допустимые значения. При формировании кровельного ската бревна выносят за стены на 40 см (плюс-минус). Есть ограничения по максимальным значениям – для обрезных это не более 6 м, иначе возрастет прогиб, и упадет стойкость. Если пролет больше, используется не обычный, а клееный материал.

В малоэтажном строительстве используются в основном однопролетные балочные изделия, которые могут иметь вид брусьев, досок, бревен. Протяженность элементов тоже варьируется в широком диапазоне, определяется она с учетом технических параметров возводимого здания. На строительных сайтах встречаются онлайн-калькуляторы, которыми удобно пользоваться для ввода данных и быстрых подсчетов.

Оптимальным при анализе балочных перекрытий в плане оказываемого давления считается диапазон 2.4-4 м. Площадь с пропорциональным соотношением параметров высоты и ширины 1.5:1 является оптимальным сечением. Изгиб делится на сопротивляющий момент, полученное в итоге значение должно быть ниже номинальной несущей способности. Внимательно сверяйте все данные, чтобы не допускать ошибок.

Не забывайте учитывать прогиб, материал изготовления, способ обработки. Первый показатель оказывает непосредственное влияние на прочность конструкции, если он сильный, страдает внешний вид перекрытия, если очень сильный – появляются риски аварий. Чтобы узнать прогиб, предельные нагрузочные величины для доски умножайте на длину балок и на 2, а потом полученный множитель делите на 8.

Если в своем будущем доме Вы планируете устройство деревянного междуэтажного и чердачного перекрытия, то Вам необходимо знать расстояние между балками и их оптимальное сечение. А для этого делается специальный расчет. Без него Вы рискуете оказаться на нижележащем этаже или потратить на закупку материалов лишние деньги.

1. Калькулятор

2. Инструкция к калькулятору

Конечно, расчет деревянных балок — это достаточно нудное и долгое занятие. Поэтому для ускорения процесса и для быстрой проработки сразу нескольких вариантов был создан данный калькулятор. С его помощью можно проверить несущую способность (расчет по прочности — I группа предельных состояний) и жесткость (расчет по прогибу — II группа предельных состояний) следующих балок:

  • Тип 1 — цельная деревянная балка.
  • Тип 2 — клееная балка из досок.
  • Тип 3 — клееная балка из шпона LVL.
  • Тип 4 — обрезанное бревно.

Рассчитывается балка на изгиб, как шарнирно опертая с равномерно-распределенной нагрузкой, в соответствии со СНиП II-25-80 (СП 64.13330.2011) «Деревянные конструкции» , который можно скачать . Для удобства некоторые таблицы необходимые для расчета вынесены в отдельную статью .

Кроме выше перечисленного данный калькулятор способен рассчитать общий объем балок и их стоимость.

Примеры расчета

  • Сбор нагрузок на балки перекрытия онлайн.
  • Расчет прямоугольной трубы
  • Расчет квадратной трубы
  • Расчет двутавра
  • Расчет швеллера
  • Расчет уголка

Условия эксплуатации:

Длина пролета (L) — расстояние между двумя опорами балки. Например, для стен, это расстояние между двумя внутренними гранями этих стен.

Шаг балок (Р) — шаг, с которым предполагается укладывать балки. Обычно он составляет 500-1000 мм.

Вид перекрытия — здесь Вы должны выбрать, какое перекрытие (междуэтажное или чердачное) будет в данный момент рассчитываться. Для справки, чердачное — это перекрытие над последним этажом в случае, если чердак не жилой.

Длина стены (Х) — длина стены, на которую опираются балки с одной стороны.

Срок службы — предполагаемое время до замены балок.

Температура — максимальная температура, при которой будут эксплуатироваться конструкции.

Влажность — расшифровывается так: Эксплуатационная влажность древесины/Максимальная влажность воздуха при температуре 20 °С. Чаще всего, для жилых помещений — это до 12%/до 65%.

Характеристики балки:

Материал — порода древесины, из которой сделана балка.

Длина (А), ширина (В), высота (Н) балки — размеры рассчитываемой балки.

Сорт древесины — из какого сорта древесины выполнена балка.

Пропитка — имеется ввиду глубокая пропитка антипиренами под давлением.

Коэф. mб — коэффициент для балок с высотой сечения более 50 мм. Выбирается по таблице 4 . Если высота сечения балки ниже 50 мм, то ставится цифра 1.

Нагрузка:

Нормативные и расчетные нагрузки — максимальные нагрузки, которые действуют на балки перекрытия. Для сбора нагрузок Вы можете воспользоваться специальным примером.

Коэф. mд — вводится в случае, если напряжения в элементах, возникающие от постоянных и временных длительных нагрузок, превышают 80% суммарного напряжения от всех нагрузок.

Цена за кубометр — стоимость 1 м3 пиломатериала.

Здесь и в последующих типах будут рассматриваться только новые переменные.

Толщина слоя (Т) — толщина досок, из которых склеивается балка.

Коэф. kw — коэффициент, определяемый по таблице 11 .

Тип балки — рассчитываются балки типа Ultralam (таблица 15 ).

Диаметр балки (D) — диаметр оцилиндрованного бревна, из которого была сделана балка путем его обрезки с одной или двух сторон.

Расчет по прочности:

Wбалки — момент сопротивления рассчитываемой балки.

Wтреб — требуемый момент сопротивления.

Запас — в случае, если Wбалки < Wтреб — в графе показывается отрицательное значение с указанием процента нехватки сечения; в случае, когда Wбалки > Wтреб — значение положительное, указывающее на сколько процентов сечение существующей балки больше требуемого.

Расчет по прогибу:

Fбалки — прогиб рассчитываемой балки заданного сечения.

Fmax — максимальный прогиб из условия жесткости в зависимости от вида перекрытия.

Запас — Fбалки < Fmax — сечение удовлетворяет условию жесткости с запасом, указанным в графе; Fбалки > Fmax — сечение балки не проходит для указанного пролета и шага балок.

Другие параметры:

Количество балок — получаемое количество балок, лежащих вдоль стены длиной X с шагом P.

Общий объем — общая кубатура балок.

Стоимость — количество затраченных средств на покупку данного пиломатериала.

Балка – это элемент строительных несущих конструкций, который широко используется для возведения межэтажных перекрытий. Перекрытия, в свою очередь, предназначены для разделения по высоте смежных помещений, а также принятия статических и динамических нагрузок от находящихся на нем предметов интерьера, оборудования, людей и т.д.

В большинстве случаев, для частного домостроения используются деревянные балки из цельного бруса, отесанного бревна, клееных досок или шпона. Эти материалы, при правильном подборе параметров, способны обеспечить необходимую прочность и жесткость основания, что является залогом долговечности постройки.

Мы предлагаем вам выполнить онлайн расчет балки перекрытия на прочность и изгиб, подобрать её сечение и определить шаг между балками. Также вы получите набор персональных чертежей и 3D-модель для лучшего восприятия возводимой конструкции. Программа учитывает СНиП II-25-80 (СП 64.13330.2011) и другие справочные источники.

Точный и грамотный расчет деревянных балок в сервисе KALK.PRO, позволяет узнать все необходимые параметры для сооружения крепкого перекрытия. Все вычисления бесплатны, есть возможность сохранения рассчитанных данных в формате PDF, плюс доступны схемы и 3D-модель.

Расчет балки – Пример

Алгоритм работы программы для расчета балок основывается на СП 64.13330.2011 (Актуализированная редакция СНиП II-25-80). Для большей наглядности, мы разберем расчет однопролетной балки на прогиб и прочность в примере, кратко описывая основные этапы вычисления и формулы.

Длина балки

Расчетная длина балки определяется значением длины пролета и запасом для укладывания их на стену.

Узнать протяженность между пролетами не составляет трудности – с помощью рулетки замерьте расстояние, которые необходимо перекрыть балками, и к полученному числу добавьте величину заделки в «гнезда» равную 300 мм (по 150 мм на сторону) или более.

В случае, когда вы собираетесь крепить балки на специальные металлические крепления, длина пролета будет равна длине балки.

Если ваше помещение имеет неправильную форму, например, 4х5 м, правильнее будет использовать балки меньшей длины, т.е. 4 м, а не 5 м.

Определение расчетной нагрузки

Для того чтобы правильно рассчитать нагрузку на деревянную балку, нужно определить все виды оказываемых воздействий на перекрытие.

Величину нагрузки можно узнать двумя путями: использовать СНиП 2.01.07-85* Нагрузки и воздействия и с его помощью высчитать все необходимые коэффициенты вручную, а затем сложить их, или же можно взять нормативные данные из справочников. Если вы произведете все расчеты правильно, то первый вариант будет более точен, однако никто не застрахован, что при выполнении долгих громоздких вычислений не будет допущена ошибка.

Поэтому для получения приблизительного расчета, целесообразнее взять стандартные величины и применять их в последующих формулах. Согласно справочникам, для межэтажных перекрытий расчетная нагрузка обычно составляет 400 кг/м2, а для чердаков – 200 кг/м2.

Типовые нагрузки для межэтажных перекрытий — 400 кг/м2 и чердаков – 200 кг/м2 применимы не во всех ситуациях. Если подразумевается, что на основание будет воздействовать ненормально большой вес, например, от тяжелого оборудования – необходимо произвести корректировку начальных параметров.

Максимальный изгибающий момент

Изгибающий момент – момент внешних сил относительно нейтральной оси сечения балки или другого твёрдого тела, иначе простыми словами, это произведение силы на плечо.

Максимальный изгибающий момент, соответственно, принимает наибольшее значение, которое может выдержать данное тело без нарушения целостности.

Если на балку будет действовать равномерно распределенная нагрузка (в калькуляторе реализован именно этот случай), то значение максимального изгибающего момента будет равно:

Изгибающий момент (формула): Mmax = q × l2 / 8

  • q – величина нагрузки на перекрытие;
  • l – величина пролета перекрытия.

Требуемый момент сопротивления

Момент сопротивления – это способность материала оказывать сопротивления к изгибу, растяжению или сжатию. Для того чтобы определить это значение для деревянной балки, нужно воспользоваться готовой формулой:

Требуемый момент сопротивления (формула): Wтреб = Мmax / R

  • Мmax – величина максимального изгибающего момента;
  • R – величина расчетного сопротивления древесины.

Отдельно нужно рассказать о величине R. Она имеет целый ряд поправочных коэффициентов, которые нужно учитывать при расчете балки, если вы хотите получить максимально точный результат. Полная формула выглядит так:

Расчетное сопротивление древесины (формула): R = Rи × mп × mд × mт × ma × γсc × …

  • Rи – расчетное сопротивление древесины изгибу, подбираемое в зависимости от расчетных значений для сосны, ели и лиственницы при влажности 12% согласно СП 64.13330.2011;
  • mп – коэффициент перехода для других пород древесины;
  • mд – поправочный коэффициент принимаемый в случае, когда постоянные и временный длительные нагрузки превышают 80% суммарного напряжения от всех нагрузок;
  • mт – температурный коэффициент;
  • ma – коэффициент принимаемый в случае, когда дерево подвергается пропитке антипиренами;
  • γсc – коэффициент срока службы древесины.
  • … – существуют другие менее важные коэффициенты, однако при расчетах они практически не используются, так как величина поправки слишком незначительна.

Получается, что по сути, величина R это произведение расчетного сопротивления древесины изгибу и различных поправок. В большинстве случаев для получения ориентировочного результата, эти поправки не учитываются, а значение R принимается равным Rи.

Момент сопротивления балки перекрытия

В зависимости от формы сечения балки (квадрат, прямоугольник, круг, овал…) формулы нахождения фактического момента сопротивления будут отличаться. В наших калькуляторах применяются только два типа профиля: прямоугольный и тесаное бревно. Мы продолжим разбирать алгоритм на примере прямоугольного сечения:

Момент сопротивления балки (формула): W = b × h2 /6

  • b – ширина балки;
  • h – высота балки.

Расчет балки на прочность

Для того чтобы определить подходит балка по прочности или нет, нужно чтобы момент сопротивления балки перекрытия (W), равнялся или был больше требуемого момента (Wтреб ):

Wтреб ≤ W

Но вычислить реальный момент сопротивления балки перекрытия мы не можем, так как не известна ее высота. В этом случае нужно или воспользоваться перебором сечений, исходя из условия, что наиболее оптимальное соотношение высоты к ширине 1,4:1, или же просто принять W = Wтреб, в силу того, что мы не нарушаем условий заданной формулы. Также, после этих манипуляций станет известен параметр h.

Онлайн калькулятор KALK.PRO расчета балки на прочность оперативно вычислит нужное сечение, чтобы перекрытие выдержало расчетную нагрузку БЫСТРО и БЕСПЛАТНО.

Расчет балки на прогиб (изгиб)

Методика определения прогиба балки значительно проще. При распределенной нагрузке, применяется формула:

Прогиб балки (формула): f = (5 × q × l4 ) / (384 × E × I)

  • q – величина нагрузки на перекрытие;
  • l – величина пролета перекрытия;
  • E – модуль упругости;
  • I – момент инерции.

Первые два параметра нам известны, модуль упругости для древесины обычно принимается равным 100 000 кгс/м², хотя это и не всегда так, а момент инерции, в зависимости от формы сечения, рассчитывается по разным формулам. Для прямоугольника:

Момент инерции (формула): I = b × h3 /12

  • b – ширина балки;
  • h – высота балки.

Собирая все в кучу, мы получим итоговую формулу расчета прогиба балки:

Прогиб балки (итоговая формула): f = (5 × q × l4 ) / (384 × E × (b × h3 / 12))

После того, как вы получите искомое значение, нужно сравнить его с величиной допустимого (предельного) прогиба балки в долях от пролета. Этот параметр устанавливается СНиП II-25-80 «Деревянные конструкции»:

Элементы конструкций

Максимальный прогиб балки, не более

1. Балки междуэтажных перекрытий

2. Балки чердачных перекрытий

3. Перекрытия при наличии стяжки/штукатурки

Например, для межэтажных перекрытий при длине пролета равной 400 см мы получим условие – 400/250, т.е. предельно возможный изгиб в данной ситуации 1,6 см.

Если ваше значение f превышает его, необходимо изменять сечение балки в большую сторону, до тех пор, пока оно не станет меньше величины предельного прогиба.

Наш калькулятор прогиба деревянной балки сам подберет нужные параметры сечения и избавит вас от сложных громоздких вычислений.

Конечные параметры балки

После того, как вы подберете сечение при расчете на прочность и прогиб/изгиб, можно будет определить минимально допустимые параметры балки.

Предположим, что при расчете на прочность вы получили сечение – 165х150 мм, а при расчете на прогиб – 239х150 мм. Очевидно, что в подобной ситуации следует выбирать наибольшую величину, то есть значение на прогиб, поскольку если вы сделаете ровно наоборот, перекрытие выдержит нагрузку, но очень сильно деформируется и ни о каком ровном потолке не может быть и речи.

В результате расчета несущей способности деревянной балки, мы используем сечение равное 239х150 мм, но тут сталкиваемся с очередной проблемой – балок такого размера серийно никто не производит. В этом случае нужно производить округление обязательно в большую сторону, обычно кратно 50 мм, т.е. нам подойдет балка 250х150 мм. В некоторых ситуациях, можно обратиться к ГОСТ 24454-06, в нем указаны все типовые размеры материалов.

Расчет балки онлайн без знания сопромата – одно из главных преимуществ сервиса KALK.PRO.

Методика расчета балок перекрытия из клееного бруса и отесанного бревна

Технология расчета балок перекрытия из клееного бруса практически не отличается от изделий из цельной древесины. Все этапы работы с калькулятором совпадают и никакие дополнительные коэффициенты вводить не нужно, но при самостоятельном вычислении в формулу нахождения величины расчетного сопротивления (R), нужно будет добавить дополнительный коэффициент kw , который учитывает форму и размер поперечного сечения.

Например, для прямоугольных клееных балок принимаются следующие поправки:

Также для клееных балок из шпона LVL Ultralam, существует более подробная аннотация с характеристиками на сайте производителя, в которой помимо значений величины R, существует подробные характеристики модуля упругости (E) для каждого вида продукции:

Модуль упругости Е, МПа

16 000

15 600

14 000

11 000

12 700

В случае расчета тесаного бревна (лафета), немного изменяются исходные формулы момента сопротивления и момента инерции, так как форма сечения балки отличается от прямоугольной. Помимо этого, есть и отличия в ширине отеса, оно может быть равным половине или трети диаметра, что также приводит к изменению начальных коэффициентов для обеих формул.

Ширина отеса равна 1/2 диаметра

Ширина отеса равна 1/3 диаметра

Момент сопротивления

W = 0,088D3

W = 0,09781D3

Момент инерции

I = 0,039D4

I = 0,04611D4

Оставьте комментарий