Расчет генератора

Содержание

Важный нюанс при покупке ветряка

Прежде чем приобрести или изготовить ветрогенератор, необходимо определиться с его мощностью, собственной потребностью в энергии и прочих параметрах устройства. Это принципиально важно при покупке ветряка, так как цены настолько велики, что приходится покупать устройство, которое пользователь сможет осилить по финансам. В некоторых случаях возможности оказываются настолько низкими, что приобретение уже не имеет смысла.

Расчет мощности ветрогенератора

Самостоятельное изготовление ветряка также нуждается в предварительном расчете. Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.

Произвести точный расчет с учетом всех факторов, воздействующих на ветряк, достаточно сложно. Для неподготовленных в теоретическом отношении мастеров такой расчет слишком сложен, он требует обладания множеством данных, недоступных без специальных измерений или расчетов.

Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.

Как произвести?

Для расчета ветрогенератора надо произвести следующие действия:

  • определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
  • полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
  • зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач. От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
  • расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока

Для примера рассмотрим расчет простого варианта. Формула выглядит следующим образом:

P=k·R·V³·S/2

Где P — мощность потока.

K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.

R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м3.

V — скорость ветра.

S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).

Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с

P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт

Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.

Что нужно учитывать?

При расчете ветряка следует учитывать особенности конструкции ротора. Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

Сооружение мачты может обойтись в большую сумму денег и значительные вложения труда. Кроме того, обслуживание ветряка, расположенного на высоте около 10 м над поверхностью земли чрезвычайно сложно и опасно.

Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.

Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.

Реальная мощность самодельного ветрогенератора

Особенностью самодельных устройств является использование подручных материалов и устройств. В таких условиях обеспечить полноценное соответствие проектным данным не всегда удается. При этом, разница в расчетных и реальных показателях может оказаться как отрицательной, так и положительной.

Величины, определяющие возможности комплекта, это мощность ветроколеса и генератора. Насколько они будут соответствовать друг другу, такая и общая мощность ветрогенератора будет получена в результате.

Например, если генератору для номинальной производительности требуется скорость вращения в 2000 об/мин, то никакое ветроколесо не сможет обеспечить нужные значения.

Поэтому прежде всего следует подбирать тихоходные образцы генераторов, способные на выработку больших количеств энергии при низких скоростях вращения. Для этого модернизируются готовые устройства (например, устанавливаются неодимовые магниты на ротор автомобильных генераторов), изготавливаются собственные конструкции на базе тех же неодимовых магнитов с заранее подсчитанной мощностью и производительностью.

Расчет параметров ветроколеса

Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д.

Следует учитывать, что увеличение количества лопастей снижает скорость вращения, но увеличивает мощность вращательного движения. Соответственно, малое число лопастей надо применять на быстроходных генераторах, а большое количество —торах, нуждающихся в большом усилии вращения.

Формула быстроходности ветроколеса выглядит следующим образом:

Z = L × W / 60 / V,

Где Z — искомая величина (быстроходность),

L — длина окружности, описываемой лопастями.

W — частота (скорость) вращения крыльчатки.

V — скорость ветра.

Специалисты рекомендуют для самостоятельного изготовления выбирать многолопастные образцы с количеством лопастей от 5 штук. Они не требовательны к балансировке, имеют более стабильную аэродинамику и более активно принимают на себя энергию воздушного потока.

Сколько экономии энергии дает ветряк?

Величина экономии, полученной от использования ветрогенератора, рассчитывается по собственным данным. Она складывается, с одной стороны из расходов на приобретение и сборку ветряка или его деталей, расходов на обслуживание комплекта. С другой стороны, учитывается стоимость сетевой электроэнергии в данном регионе, либо цена подключения и прочие расходы, связанные с этим.

Разница полученных величин и будет являться величиной экономии. Необходимо учесть также отсутствие возможности для подключения в некоторых районах, когда ветрогенератор становится единственным доступным вариантом. В таких случаях разговор об экономии становится неуместным.

Сколько электроэнергии вырабатывает?

Количество вырабатываемой энергии зависит от параметров крыльчатки и собственно генератора. Максимально возможным количеством следует считать номинальные данные генератора, уменьшенные на величину КИЭВ крыльчатки. На практике показатели намного ниже, так как в получении результата большое значение имеет скорость ветра, которую невозможно заранее предсказать.

Кроме того, имеются различные тонкие эффекты, в сумме оказывающие заметное влияние на конечную производительность ветряка. Принципиально важными значениями являются диаметр крыльчатки и скорость ветра, от них напрямую зависит количество полученной энергии.

Минимальная скорость ветра для ветряка

Минимальная скорость ветра — в данном случае это величина, при которой лопасти ветряка начинают вращаться. Это значение показывает степень чувствительности крыльчатки, но на конечный результат влияет слабо. Генератор имеет собственные потребности, для него само по себе вращение еще не решает все вопросы.

Требуется определенная скорость и стабильность движения, отсутствие резких рывков. Рассматривать минимальную скорость вращения следует только с позиций общей эффективности рабочего колеса, позволяющей оценивать его способность обеспечить выработку энергии на слабых потоках.

Внешний вид рабочих органов ветродвигателей: а – карусельного; б – ортогонального; в и г – крыльчатого двухлопастного и многолопастного соответственно. Рис. С. В. Карповича

ВЕТРОДВИ́ГАТЕЛЬ, дви­га­тель, ис­поль­зую­щий ки­не­тич. энер­гию вет­ра для вы­ра­бот­ки ме­ха­нич. энер­гии. В ка­че­ст­ве ра­бо­че­го ор­га­на В., вос­при­ни­маю­ще­го энер­гию (дав­ле­ние) вет­ро­во­го по­то­ка и пре­об­ра­зую­ще­го её в ме­ха­нич. энер­гию вра­ще­ния ва­ла, при­ме­ня­ют ро­тор, ба­ра­бан с ло­пат­ка­ми, вет­ро­ко­ле­со и т. п. Клас­си­фи­ка­ция В. про­во­дит­ся в за­ви­си­мо­сти от ти­па ра­бо­че­го ор­га­на и по­ло­же­ния его оси от­но­си­тель­но на­прав­ле­ния вет­ра. Раз­ли­ча­ют В. ка­ру­сель­ные (или ро­тор­ные), ор­то­го­наль­ные и крыль­ча­тые. У ка­ру­сель­ных В. (рис., а) ось вра­ще­ния ра­бо­че­го ор­га­на вер­ти­каль­на. Ве­тер да­вит на ло­па­сти, рас­по­ло­жен­ные по од­ну сто­ро­ну оси; ло­па­сти по др. сто­ро­ну оси при­кры­ва­ют­ся шир­мой ли­бо по­во­ра­чи­ва­ют­ся спец. при­спо­соб­ле­ни­ем реб­ром к вет­ру. Ло­па­сти дви­жут­ся по на­прав­ле­нию по­то­ка, по­это­му их ок­руж­ная ско­рость (на­прав­лен­ная по ка­са­тель­ной к ок­руж­но­сти) не мо­жет пре­вы­шать ско­ро­сти вет­ра. Та­кие В. от­но­си­тель­но ти­хо­ход­ны. Эф­фек­тив­ность В. оце­ни­ва­ют с по­мо­щью ко­эф. ис­поль­зо­ва­ния энер­гии вет­ра $ξ$, ко­то­рый по­ка­зы­ва­ет, ка­кая до­ля энер­гии вет­ро­во­го по­то­ка пре­об­ра­зу­ет­ся в ме­ха­нич. энер­гию. Из чис­ла вер­ти­каль­но-осе­вых В. наи­боль­ший $ξ$ име­ет ор­то­го­наль­ный В. (рис., б). Пре­иму­ще­ст­вен­ное рас­про­стра­не­ние по­лу­чи­ли крыль­ча­тые В., у ко­то­рых ось вет­ро­ко­ле­са го­ри­зон­таль­на и па­рал­лель­на на­прав­ле­нию по­то­ка; ха­рак­те­ри­зу­ют­ся вы­со­ким $ξ$ и на­дёж­но­стью в экс­плуа­та­ции. В та­ких В. ло­пасть с на­ко­неч­ни­ком кре­п­ле­ния к сту­пи­це на­зы­ва­ет­ся кры­лом (от­сю­да на­зва­ние). В за­ви­си­мо­сти от чис­ла ло­па­стей раз­ли­ча­ют ветроколёса бы­ст­ро­ход­ные (ме­нее 4 ло­па­стей), ср. бы­ст­ро­ход­но­сти (от 4 до 8) и ти­хо­ход­ные (бо­лее 8). Бы­ст­ро­ход­ность вет­ро­ко­ле­са оце­ни­ва­ет­ся чис­лом мо­ду­лей $Z$, рав­ным от­но­ше­нию ок­руж­ной ско­ро­сти $ωR$ внеш­не­го кон­ца ло­па­сти ра­диу­сом $R$, вра­щаю­щей­ся с уг­ло­вой ско­ро­стью ω, к ско­ро­сти на­бе­гаю­ще­го по­то­ка $v$. При оди­на­ко­вом $Z$ вет­ро­ко­ле­со боль­ше­го диа­мет­ра име­ет мень­шую час­то­ту вра­ще­ния. При про­чих оди­на­ко­вых ус­ло­ви­ях уве­ли­че­ние чис­ла ло­па­стей так­же сни­жа­ет час­то­ту вра­ще­ния вет­ро­ко­ле­са. Вет­ро­ко­ле­со с не­боль­шим чис­лом ло­па­стей (рис., в) обыч­но со­сто­ит из сту­пи­цы и ло­па­стей, со­еди­нён­ных с ней жёстко под не­ко­то­рым уг­лом к плос­кости вра­ще­ния или с по­мо­щью под­шип­ни­ко­вых уз­лов, в ко­то­рых ло­пасть по­во­ра­чи­ва­ет­ся для из­ме­не­ния уг­ла ус­та­нов­ки. Воз­душ­ный по­ток на­бе­га­ет на ло­пасть под не­ко­то­рым уг­лом ата­ки. Воз­ни­каю­щая на ка­ж­дой ло­па­сти пол­ная аэ­ро­ди­на­мич. си­ла рас­кла­ды­ва­ет­ся на подъ­ём­ную си­лу, соз­даю­щую вра­щаю­щий мо­мент, и на си­лу ло­бо­во­го дав­ле­ния, дей­ст­вую­щую по оси вет­ро­ко­ле­са. Бы­ст­ро­ход­ное вет­ро­ко­ле­со с по­во­рот­ны­ми ло­па­стя­ми час­то кон­ст­рук­тив­но объ­е­ди­не­но с ме­ха­низ­ма­ми ре­гу­ли­ро­ва­ния час­то­ты вра­ще­ния, ог­ра­ни­че­ния мощ­но­сти и пус­ка-ос­та­нов­ки В., осу­ще­ст­в­ляю­щи­ми по­во­рот ло­па­сти от­но­си­тель­но его про­доль­ной оси. Мно­го­ло­па­ст­ное вет­ро­ко­ле­со (рис., г) со­сто­ит из сту­пи­цы с кар­ка­сом, на ко­то­ром жёстко за­кре­п­ле­ны спе­ци­аль­но спро­фи­ли­ро­ван­ные ло­па­сти из лис­то­вой ста­ли. Ог­ра­ни­че­ние раз­ви­вае­мой мощ­но­сти обыч­но осу­ще­ств­ля­ет­ся по­во­ро­том ти­хо­ход­но­го вет­ро­ко­ле­са от­но­си­тель­но плос­ко­сти, пер­пен­ди­ку­ляр­ной на­прав­ле­нию дей­ст­вия вет­ро­во­го по­то­ка. Мощ­ность, раз­ви­вае­мая на ва­лу вет­ро­ко­ле­са, за­ви­сит от его диа­мет­ра, фор­мы и про­фи­ля ло­па­стей и прак­ти­че­ски не за­ви­сит от их чис­ла: $P_{вк}≈3,85·10–3·ρD^2v^3ξ$, где $P_{вк}$ – мощ­ность на ва­лу вет­ро­ко­ле­са (кВт), $ρ$ – плот­ность воз­ду­ха (кг/м3), $v$ – ско­рость вет­ра (м/с), $D$ – диа­метр вет­ро­ко­ле­са (м).

Для расчета генератора постоянного тока с параллельным возбуждением необходимо:

усвоить устройство и принцип действия электрических машин постоянного тока; знать формулы, выражающие взаимосвязь между электрическими величинами, характеризующими данный тип электрической машины.

— отчетливо представлять связь между напряжением U на зажимах машины, ЭДС Е и падением напряжения IRв обмотке якоря генератора и двигателя.

Для генератора Е =U+ IЯ· ∑R, для двигателя U = Е + IЯ· ∑R

В этих формулах ∑R= RЯ+RДП +RКО +RС +RЩ — сумма сопротивлений всех участков цепи якоря:

RЯ — обмотки якоря;

RДП — обмотки добавочных полюсов;

RКО — компенсационной обмотки;

RЩ — переходного щеточного контакта;

RС -последовательной обмотки возбуж­дения.

При отсутствии в машине (это зависит от её типа и предложен­ной задачи) каких-либо из указанных обмоток в формулу, определяю­щую ∑R, не входят соответствующие слагаемые.

Полезный вращающий момент М на валу двигателя определяется по формуле

M = Н·м,

гдеР2- полезная механическая мощность,Вт. n — об/мин. – частота вращения вала двигателя.

Пример

Генератор постоянного тока с параллельным возбуждением ра­ботает в номинальном режиме.

Его технические данные:

РНОМ =16000Вт — номинальная мощность;

Uном =230 В — номинальное напряжение;

RЯ=0,13 Ом — сопротивление обмотки якоря;

RВ=164 Ом — сопротивление обмотки возбуждения;

ηНОМ= 90,1 % номинальный коэффициент полезного действия.

Определить:

Iном — ток нагрузки, I B — ток возбуждения,

I Я — ток якоря,

РЯ- потери мощности в якоре,

РВ- потери мощности в обмотке возбуждения,

РЩ — потери мощности в щеточном контакте,

РХ = РСТ +РМЕХ — потери холостого хода, состоящие из по­терь в стали и механических потерь. РДОБ- добавочные потери, ∑P- суммарные потери мощности, Е — ЭДС генератора.

Из-за дороговизны электроэнергии стало актуально использовать альтернативные её источники, одними из которых являются вертикальные ветрогенераторы. При необходимости соорудить такое оборудование можно самостоятельно.

Устройство ветрового генератора

В конструкцию ветряка нового поколения для выработки ветроэнергии входят:

  1. Колесо, оборудованное лопастями. Этот узел представляет собой основной ротор, который необходим для восприятия силы воздушного потока. Его предназначение заключается в преобразовании кинетической энергии ветра в механическую. Для этого образуется крутящий момент на валу.
  2. Редукторный узел. Используется для синхронизации вращательного движения и образует скорость вращения вала генераторного узла. Монтируется внутри конструкции.
  3. Генераторный узел, представляет собой устройство, предназначенное для выработки электротока в результате преобразования крутящего момента в магнитное поле. Данный агрегат способствует созданию в электроцепи разности напряжений.
  4. АКБ. Предназначение аккумулятора заключается в накоплении энергии и выдаче постоянного тока, величина которого составляет 12 вольт.
  5. Инверторный узел. Являет собой механизм, использующийся для преобразования постоянного значения тока в переменное. Рабочий параметр составляет 220 вольт.

Схема подключения ветряка Vertical к бытовой сети дома

Принцип работы ветровых генераторов

В самодельных или фирменных ветряных устройствах с вертикальной или горизонтальной осью вращения лопасти начинают двигаться в результате воздействия силы ветра. Основные элементы оборудования заставляют вращаться роторный узел посредством специального приводного агрегата. Наличие статорной обмотки способствует преобразованию механической энергии в электрический ток. Осевые винты обладают аэродинамическими особенностями, в результате чего обеспечивают быстрое прокручивание турбины агрегата.

Затем в роторных генераторах происходит преобразование силы вращения в электричество, собирающееся в аккумуляторе. По факту чем сильнее будет воздушный поток, тем быстрее прокручиваются лопасти агрегата, что способствует образованию энергии. Так как работа генераторного оборудования основывается на максимальном применении альтернативного источника, одна часть лопастей обладает более закругленной формой. А вторая — ровная. При прохождении потока воздуха по округлой части происходит образование вакуумного участка, это способствует засасыванию лопасти и уводит ее в сторону.

Это приводит к образованию энергии, воздействие которой приводит к раскручиванию лопастей при небольшом ветре.

При прокручивании происходит вращение оси винтов, которые подключены к роторному механизму. На этом устройстве располагаются двенадцать магнитных элементов, которые прокручиваются внутри. Это приводит к образованию переменного электрического тока с частотой, как в бытовых розетках. Полученную энергию можно не только вырабатывать, но и передавать на расстояния, однако ее нельзя аккумулировать.

Чтобы ее собирать, потребуется преобразование в постоянный ток, именно эту цель выполняет электроцепь, расположенная внутри турбины. Для получения большого объема электроэнергии осуществляется изготовление промышленного оборудования, ветровые парки обычно включают в себя десятки таких установок.

Принцип работы ветрогенератора дает возможность использовать агрегат в вариантах:

  • для автономного функционирования;
  • с солнечными батареями;
  • параллельно с резервным аккумулятором;
  • вместе с бензиновым либо дизельным генераторным устройством.

При движении воздушного потока скоростью около 45 км/час выработка энергии турбиной составляет примерно 400 Вт. Этого хватит для освещения загородного дачного участка. При необходимости можно реализовать накопление электроэнергии в батарее.

Для зарядки аккумулятора используется специальное оборудование. При снижении величины подзаряда скорость вращения лопастей станет падать. Если аккумулятор полностью разрядится, элементы генераторного оборудования будут опять прокручиваться. Этот принцип дает возможность поддерживать зарядку устройства на конкретном уровне. При более высокой скорости потока воздуха турбина агрегата сможет производить больший объем энергии.

Пользователь Darkhan Dogalakov на примере модели SEAH 400-W рассказал о принципе действия ветрового оборудования.

Какие ветрогенераторы самые эффективные (классификация агрегатов)

Чтобы сделать самоделку и правильно рассчитать эффективность самого мощного устройства для генерации тока, надо разобраться в типах оборудования. Они подробно приведены в таблице.

Классификация по оси вращения:

Горизонтальные Вертикальные
Такой вид оборудования получил наибольшую популярность, в нем ось вращения турбины располагается параллельно земле. Подобные ветрогенераторы часто называют ветряными мельницами, в них обороты лопастей осуществляются против потока ветра. Конструкция оборудования включает в себя систему для автоматического прокручивания головной части. Она требуется для поиска ветрового потока. Также необходимо устройство для поворота лопастей, чтобы для выработки электроэнергии использовать даже небольшую силу.

Применение такого оборудования более целесообразно на промышленных предприятиях, чем в быту. На практике они чаще используются для создания систем ветроэлектростанций.

Устройства такого типа на практике менее эффективны. Вращение лопастей турбины осуществляется параллельно поверхности земли независимо от силы ветра и его вектора. Направление потока также не играют роли, при любом воздействии вращательные элементы прокручиваются против него. В результате этого ветровой генератор теряет часть мощности, что приводит к снижению энергоэффективности оборудования в целом. Но в плане установки и обслуживания агрегаты, в которых лопасти расположены вертикально, более подходят для домашнего использования.

Это связано с тем, что редукторный узел и генератор монтируются на земле. К минусам такого оборудования следует отнести дорогостоящую установку и серьезные эксплуатационные затраты. Для монтажа генератора потребуется достаточно места. Поэтому использование вертикальных устройств более целесообразно в небольших частных хозяйствах.

Классификация по количеству лопастей:

Двухлопастные Трехлопастные Многолопастные
Данный тип агрегатов характеризуется наличием двух элементов вращения. Этот вариант практически неэффективен сегодня, но достаточно распространен за счет своей надежности. Этот вид оборудования является самым распространенным. Трехлопастные агрегаты используются не только в сельских хозяйствах и промышленности, но и в частных домовладениях. Этот тип оборудования получил распространение благодаря надежности и эффективности. Последние могут иметь от 50 и более элементов вращения. Чтобы обеспечить выработку нужного объема электроэнергии, надо не само прокручивание лопастей, а вывод на необходимое число оборотов. Наличие каждой дополнительного элемента вращения обеспечивает увеличение параметра общего сопротивления ветрового колеса. В результате этого выход оборудования на необходимое количество оборотов будет проблематичным.

Карусельные устройства, оборудованные множеством лопастей, начинают вращение при небольшой силе ветра. Но их применение более актуально, если играет роль непосредственно сам факт прокручивания, к примеру, когда требуется перекачка воды. Чтобы эффективно обеспечить выработку большого количества энергии, многолопастные агрегаты не используются. Для их функционирования требуется установка редукторного устройства. Это не только усложняет всю конструкцию оборудования в целом, но и делает ее менее надежной по сравнению с двух- и трехлопастными.

Классификация по материалам элементов вращения:

С жесткими лопастями Парусные агрегаты
Стоимость таких агрегатов более высокая за счет дороговизны производства деталей вращения. Но по сравнению с парусным оборудованием, генераторы с жесткими лопастями более надежны и характеризуются высоким ресурсом эксплуатации. Поскольку в воздухе содержится пыль и песок, на элементы вращения воздействует высокая нагрузка. При работе оборудования в стабильных условиях, ему требуется ежегодная замена антикоррозийной пленки, которая наносится на концы лопастей. Без этого элемент вращения со временем начинает терять свои рабочие свойства. Такой тип лопастей более прост в плане производства и менее затратный, по сравнению с металлом либо стеклопластиком. Но экономия при изготовлении может привести к серьезным расходам в будущем. При диаметре ветрового колеса в три метра скорость движения конца лопасти может составить до 500 км/ч, когда обороты оборудования составляют около 600 в минуту. Это — серьезная нагрузка даже для жестких деталей. Практика показывает, что элементы вращения на парусном оборудовании приходится менять часто, особенно если сила ветра высокая.

По шагу винта:

Фиксированный Изменяемый
Простейший по устройству ветровой агрегат. Фиксированный шаг винта позволяет стабильно получать определенный объем энергии независимо от силы ветра. В этом тип оборудования уступает следующему виду. Такое оборудование позволяет увеличить диапазон эффективных рабочих скоростей устройства. Но использование дополнительных механизмов внутри конструкции делает ее сложной, речь идет о лопастях. Масса ветрового колеса будет более высокой, а надежность установки в целом — снизится. Поэтому оборудование нужно усилить, что в итоге способствует увеличению цены на агрегат и его дальнейшее обслуживание.

Канал «Fodiator Ch» подробно рассказал о разновидностях ветряных генераторных установок.

Классификация по типу ротора

В соответствии с разновидностью роторного механизма все агрегаты можно разделить на несколько видов:

  • ортогональные устройства Дарье;
  • агрегаты с роторным узлом Савониуса;
  • устройства с вертикально-осевой конструкцией агрегата;
  • оборудование с геликоидным типом роторного механизма.

Устройства Дарнье

Оборудование такого класса может оснащаться двумя либо тремя элементами вращения. Лопасти будут изогнуты в виде овала.

Основные достоинства такого типа:

  • оборудование самостоятельно ориентируется на направление потока воздуха;
  • простота кинетической схемы устройства;
  • основной вал приводного механизма находится близко к земле, что способствует более упрощенному обслуживанию.

Недостатки агрегатов:

  • из-за конструктивных особенностей отсутствует возможность самостоятельной раскрутки оборудования;
  • слишком большая нагрузка на опорные узлы, что связано с динамическим воздействием от потока ветра;
  • агрегаты с ротором Дарнье работают громко;
  • заданного профиля элемента вращения необходимо придерживаться по длине.

Генераторы с ротором Савониуса

Такое оборудование являет собой устройство, где лопасти механизма изготовлены в виде цилиндрических устройств.

Основные преимущества:

  • устройство может начать работу при небольшой силе потока ветра, составляющей от трех метров в секунду;
  • высокий ресурс эксплуатации и надежность агрегата;
  • оперативный набор хороших показателей крутящего момента;
  • дешевизна в плане производства и обслуживания.

К основным минусам относится низкая эффективность агрегата в преобразовании ветрового потока. Мощность оборудования составляет не более 4-6 кВт. Из-за этого роторные механизмы Савониуса обычно используются в комбинированных агрегатах. К примеру, для разгона генераторного устройства, разработанного по схеме Дарнье.

Пользователь Andrey Vasilyev показал, как работает спиральный тип оборудования, построенный на роторе Савониуса.

Агрегаты с вертикально-осевым ротором

Основная особенность такого типа оборудования заключается в том, что лопасти располагаются вертикально и характеризуются профилем авиационного крыла. Его ось параллельна валу. Визуально такой генератор похож на агрегат Дарнье, но он более прост в плане производства. При функционировании быстрее набирает рабочую скорость, а во время работы практически не издает звуковых волн. Генераторы с вертикально-осевым ротором оптимально использовать для дачных участков, поскольку они характеризуются высокой надежностью и длительным ресурсом службы.

С геликоидным механизмом

Данный тип оборудования является более усовершенствованной версией вышеописанного вида. Его лопасти сделаны в форме геликоидной кривой. Это позволяет обеспечить более равномерное вращение лопастей и понизить величину нагрузки на опорную составляющую агрегата.

Благодаря изгибу основных элементов во время работы генератор быстрее набирает скорость. В плане эффективности такое оборудование можно сравнить с классическими горизонтальными ветрогенераторами. Но во время функционирования такие устройства издают больше шума. В результате того, что конфигурация лопастей в целом сложная, агрегаты с таким типом роторных механизмов более дороги в плане изготовления.

Канал «AERO Prop» продемонстрировал процесс работы установки с геликоидным устройством.

Преимущества ветровых генераторов

Достоинства, характерные для такого оборудования:

  1. Небольшие начальные значения скорости ветрового потока для того, чтобы привести в движение роторный механизм установки. В некоторых современных моделях оборудования данный показатель составляет от 0,3 метров в секунду. Но по факту вертикальные ветрогенераторы начнут эффективно производить энергию при скорости около 3-5 м/сек. Показатель номинальной мощности оборудования будет в случае, когда скоростные значения составят 10-18 метров в секунду.
  2. Работа ветрового генератора не зависит от направления движения ветра. Благодаря особенностям конструкции установка может улавливать воздух независимо от угла.
  3. Вертикальные генераторные установки, как правило, характеризуются пониженным звуковым фоном. На практике этот параметр составляет не более 20 децибел. Также в работе устройств не проявляются частоты, близкие к нижнему порогу — инфразвук, негативно влияющий на здоровье. Поэтому установка оборудования возможна в непосредственной близости с жилыми домами.
  4. Во время функционирования ветрогенераторы практически не вырабатывают электромагнитное излучение. Работа конструкции не создает разрушительных вибраций.
  5. Оборудование неопасно для птиц, поскольку ими оно воспринимается как одно препятствие. Это весомое преимущество по сравнению с горизонтальными ветрогенераторами. Лопасти таких устройств птицы не ассоциируют с препятствиями, в результате сталкиваются с ними.
  6. Благодаря конструктивным особенностям вертикальное оборудование не нуждается в использовании дополнительных механизмов для осуществления запуска. Роторный узел начинает вращаться, как только ветровой поток достигнет минимального значения для старта установки.
  7. Работа ветрогенератора возможна в любых климатических условиях. Такое оборудование позволяет противостоять даже сильному ветру, вплоть до урагана.
  8. Простота использования и обслуживания агрегатов. Ветрогенераторы характеризуются упрощенной системой управления и минимальными расходами при эксплуатации, которые требуются для поддержания рабочего состояния. Благодаря этому оборудование все чаще используется в частных домах.

Пользователь Одесский инженер подробно рассказал о достоинствах и недостатках, характерных для генераторных установок.

Недостатки вертикальных ветрогенераторов

Минусы агрегатов:

  1. Низкий параметр эффективного преобразования потока воздуха. Если сравнивать с горизонтальным оборудованием, то он меньше в 2-2,5 раза.
  2. Вертикальные устройства характеризуются высокой материалоемкостью. Это связано с большим объемом лопастей.
  3. Некоторые модели агрегатов имеют громоздкую конструкцию, которая обычно увеличивается при росте полезной мощности. В итоге этот недостаток негативно отражается на планировке площади для установки оборудования.
  4. Чтобы собрать вертикальный агрегат, потребуется большее число материалов, по сравнению с горизонтальными устройствами. В результате этого их стоимость будет выше.
  5. Вибрации, которые издает установка, хоть и небольшие, но все же присутствуют. В результате этого, а также резких изменений режимов прокручивания, образуется высокая нагрузка на подшипниковые устройства. Поэтому подвижные элементы оборудования часто ломаются.

Канал «Тепло-вода» подробно рассказал обо всех недостатках, характерных для такого типа устройств.

Инструкция по изготовлению вертикального ветрогенератора своими руками

Чтобы использовать такое устройство, его необязательно покупать. Можно изготовить оборудование самостоятельно.

Что понадобится?

Для сборки агрегата потребуются:

  • роторный механизм, это подвижная часть оборудования;
  • лопасти — будут улавливать воздушный поток;
  • осевая мачта, предназначенная для фиксирования роторного механизма, а также элементов вращения, может быть выполнена в виде шеста либо пирамиды;
  • статорное устройство — используется для расположения катушки, оснащенной проволокой;
  • АКБ — батарея необходима для накопления полученной энергии;
  • инверторный узел, использующийся для преобразования постоянного тока в переменный;
  • контроллер — блок управления системой, предназначен для остановки генераторного узла в момент, когда мощность оборудования будет превышать норму.

Лопасти могут быть выполнены из легкой листовой пластмассы, обладающей упругостью. Рекомендуется использовать именно этот материал, поскольку другие более подвержены деформированию и повреждениям. Только листовой пластик эффективно справляется с высокой динамической нагрузкой. Небольшие лопасти можно соорудить из ПВХ средней плотности, но для широких элементов понадобится более прочный материал.

Подробнее о подготовке комплектующих, а также о создании ветрового генераторного устройства из бытового вентилятора рассказал пользователь Alexander Polulyakh.

Пошаговый алгоритм действий

Процедура изготовления оборудования выглядит так:

  1. На первом этапе выполняется производство элементов вращения. Для этого из высокопрочной трубы ПВХ надо вырезать четыре одинаковых детали. Затем два полукруглых элемента выкраиваются из жесткого материала и фиксируются на каждой стороне трубы. Высота лопасти составит около 70 см. Тогда радиус вращения деталей будет в районе 69 см.
  2. Чтобы соорудить роторную систему, потребуется шесть неодимовых магнитов, а также ферритовые диски, каждый имеет диаметр 23 см. Для фиксации элементов необходим суперклей. С его помощью производится закрепление магнитов на первом диске. При выполнении этой задачи важно чередовать полярность, а в ходе установки между элементами должен соблюдаться угол в 60 градусов. Диаметр расположения составит 16,5 см.
  3. Аналогичным образом выполняется сборка второго диска. Все магнитные элементы надо зафиксировать с помощью клея, а лучше — залить их.
  4. Чтобы изготовить статорный механизм, потребуется девять катушек, на каждую из которых наматывается по 60 витков медного проводника. Диаметр его сечения должен составить 1 мм. Важно правильно выполнить спайку проводников. Начало первой катушки фиксируется на конце четвертой, а она — с контактом седьмой.
  5. Сборка следующей фазы роторного механизма осуществляется аналогичным образом. Только действия начинаются со второй катушки.
  6. Затем из фанерного листа надо сделать форму для статорного устройства. На дно укладывается полотно стекловолокна, а сверху производится монтаж фаз, на которые припаяны катушки. Полученную конструкцию надо залить клеем и оставить просохнуть на два дня. Это позволит эффективно схватиться всем элементам и занять необходимые места. После выполнения этой задачи производится подключение отдельных составляющих компонентов в единую систему.
  7. Для сборки в верхнем роторном механизме надо сделать четыре отверстия, куда будут устанавливаться шпильки. Затем на кронштейн ставится нижнее устройство, при монтаже магниты направляются вверх.
  8. Потом производится установка статорного механизма. Перед этим надо сделать в устройстве отверстия, через которые узел будет фиксироваться на кронштейне.
  9. Шпильки упираются в алюминиевую пластину, после чего производится монтаж второго роторного механизма. Этот узел устанавливается магнитными элементами вниз.
  10. Затем, используя гаечный ключ, надо по очереди вращать каждую шпильку. Это позволит обеспечить равномерное опускание верхнего роторного механизма на нижнее. После того как узел займет необходимое место, шпильки надо демонтировать. Алюминиевые пластины извлекаются, они больше не нужны.
  11. По завершении работ вся конструкция закрепляется посредством гаек. Элементы фиксации надо затянуть максимально прочно, но не жестко, иначе можно сорвать резьбу.
  12. В качестве мачты рекомендуется использовать прочную стальную трубу, ее длина должна составить около пяти метров. К ней производится фиксация готового генераторного устройства. После этого выполняется подсоединение каркаса с пластмассовыми лопастями к агрегату. Затем собранная конструкция монтируется на площадку, подготовленную для установки оборудования. Рекомендуется заранее сделать трехточечный армированный фундамент на поверхности, а для лучшей фиксации надо обеспечить растяжку.
  13. Если говорить о подключении электросети к ветровому генераторному устройству, то соединение проводников производится в конкретной последовательности. Блок управления должен принимать ресурс от агрегата и выполнять преобразование переменной величины тока в постоянную, которая требуется для зарядки аккумулятора. АКБ будет сохранять заряд. Инверторный механизм предназначен для преобразования постоянной величины тока в переменную, которая будет использовать для питания бытового оборудования.

Фотогалерея

Установка роторных элементов и магнитов, а также шпилек на алюминиевую пластинуСхемы фиксации лопаток роторного механизма

Как сделать расчет ветрогенератора самостоятельно

Для вычисления параметра мощности оборудования, которое будет использоваться на определенной местности, применяются формулы. В первую очередь производится расчет объема энергии, позволяющую выработать ветрогенератором на протяжении года.

Вычисление общей мощности оборудования

Для осуществления задачи выполняются такие действия:

  1. Сначала производятся вычисления. В соответствии с полученными результатами подбирается длина элементов вращения, а также высота башни.
  2. Выполняется анализ средней скорости воздушного потока, характерного для определенной местности. Для этого потребуется специальное оборудование. С его помощью необходимо следить за силой потока воздуха на протяжении нескольких месяцев. При отсутствии прибора можно запросить результаты у представителей местной метеостанции.

Расчет мощности ветрогенератора выполняется по формуле Р=krV 3S/2.

Обозначения символов:

  • r — параметр плотности воздушного потока, при обычных условиях это значение равно 1,225 кг/м3;
  • V — средняя величина скорости ветра, измеряется в метрах в секунду;
  • S — общая площадь воздушного потока, замеряется в метрах;
  • k — параметр эффективности турбины, которая устанавливается в оборудовании;

Используя эти расчеты, можно точно определить величину мощности, необходимой для генераторной установки в конкретной местности. Если покупается фирменное оборудование, то на его упаковке должно указываться, при какой силе воздушного потока работа устройства будет максимально эффективной. В среднем это значение составит в диапазоне от семи до одиннадцати метров в секунду.

Пользователь Одесский инженер подробно рассказал о процедуре сборки генераторного устройства, а также о выполнении расчетов.

Вычисление винтов для ветряной установки

Процедура расчета выполняется по формуле Z=LW/60/V, обозначение символов:

  • Z — величина тихоходности одного винта;
  • L — размер окружности, которую будут описывать элементы вращения;
  • W — скорость прокручивания одного винта;
  • V — скоростной параметр подачи воздушного потока.

С учетом этой формулы производится вычисление количества оборотов. Но для расчета надо учитывать и шаг одного винта оборудования. Он вычисляется по формуле H=2пR* tga.

Описание символов:

  • 2п — константное значение, составляющее 6,28;
  • R — значение радиуса, который будут описывать элементы вращения оборудования;
  • tg a — угол сечения.

Расчет инвертора для ветряного генератора

Перед выполнением этих вычислений надо учесть следующий момент. Если в домашней сети будет использоваться только одна батарея, рассчитанная на 12 вольт, то смысла ставить инвертор нет. Средняя величина мощности дачного участка или частного домовладения составляет около 4 кВт при условии максимальных нагрузок. Для подобной сети число батарей будет не менее десяти, каждая из них рассчитана на 24 вольта. С таким количеством аккумуляторов целесообразно применение инверторного устройства.

Но для данных условий, когда используется десять батарей на 24 вольта, понадобится ветрогенератор, рассчитанный на 3 кВт, не менее. Более слабое оборудование не сможет обеспечить энергией такое число аккумуляторов. Для бытовых приборов подобная мощность может быть слишком высокой.

Расчет мощностного параметра инверторного устройства осуществляется так:

  1. Сначала необходимо суммировать мощностные характеристики всех потребителей энергии.
  2. Затем определяется время потребления.
  3. Вычисляется параметр пиковой нагрузки.

Александр Капустин показал процедуру запуска ветрового генераторного устройства с инвертором.

Где лучше устанавливать?

Для максимальной эффективности оборудование следует ставить на открытой местности, в наиболее высокой точке. Важно, чтобы ветровой генератор располагался не ниже уровня зданий, находящихся рядом. Из-за этого возникнут препятствия для ветрового потока, в результате чего коэффициент полезного действия будет низким. В случае когда участок выходит к водоему или реке, ветровой генератор устанавливается непосредственно на берегу.

Для монтажа системы оптимально подходят возвышенности либо большие пустые местности. Желательно, чтобы на пространстве не было искусственных преград, препятствующих прохождению ветрового потока. Если участок или здание расположено в городской черте, то установку ветрового генератора необходимо выполнить на крыше. Чтобы расположить оборудование в жилом многоквартирном доме, нужно получить письменное согласие соседей, а также разрешение из государственных инстанций. Установка генератора будет производиться также на крыше.

При выборе места важно помнить, что ветрогенератов должен располагаться не ближе, чем в 15 метров от зданий и не дальше, чем в 25. Благодаря этому шум от работы установки не будет беспокоить жильцов.

Видео «Как сделать ветряк из автомобильного генератора?»

Пользователь Одесский инженер подробно рассказал о самостоятельном создании ветрового оборудования из генераторного узла, установленного на транспортном средстве.

Многие самодельные ветряки снабжаются самодельными генераторами с ротором на постоянных магнитах. В сети есть огромное количество примеров и инструкций как сделать такой однофазный генератор. Поговорим о более совершенном решении.

Трехфазный генератор, это ничто иное, как однофазный с двумя дополнительными обмотками, незначительно смещенными относительно первой.

В однофазном генераторе, для согласованного действия всех обмоток, они должны быть поочередно намотаны в разном направлении.

На рисунке видно, что каждая следующая обмотка намотана противоположно предыдущей. Первая по часовой стрелке, вторая против часовой стрелки. Если ваш ротор содержит 8 постоянных магнитов, то у вас должно быть и 8 обмоток.

В трехфазном генераторе вы можете иметь 3 обмотки на каждую пару магнитов. Под парой магнитов понимается один магнит обращенный северным полюсом к обмоткам и один – южным. Существует множество вариантов намотки. Например, можно использовать 8 магнитов и только 6 обмоток не перекрывающих друг друга или поставить 3 комплекта из 4-х последовательно соединенных обмоток. Ниже представлена диаграмма из 4 магнитов с иллюстрацией размещения каждого комплекта обмоток.

Как видите, первая фаза перекрывает только северные полюса магнитов, и все обмотки одной фазы намотаны в одном направлении. Две другие фазы идентичны первой за исключением того, что они смещены. Следующая диаграмма показывает взаимное размещение всех обмоток 4-х-полюсного 3-х-фазного генератора. Начала обмоток отмечены A, B, C, концы – D, E, F. Выходными у этого агрегата будут провода A, C и E. Причина, по которой выход второй фазы находится в конце обмотки, заключается в том, что когда магнит проходит вторую обмотку, генерируется ток в противофазе токов 1-й и 3-й обмотки. Чтобы не мотать 2-ю обмотку в обратном направлении, мы просто меняем в ней местами вход и выход.

Существует две схемы соединения фаз в 3-х-фазных генераторах: «звезда» и «треугольник». Треугольник дает меньшее напряжение, но больший ток. Звезда наоборот – большее напряжение и меньший ток. При расчете используется коэффициент равный квадратному корню из 3 (примерно 1,732). Каждый набор обмоток – это фаза генератора. Поэтому когда вы измеряете напряжение, ток или сопротивление одного набора обмоток, это будут параметры одной фазы. Когда вы знаете параметры одной фазы, можно посчитать параметры «звезды» и «треугольника». Напряжение для замеров может сниматься с любых двух из трех выходов генератора.

На нашем тестовом генераторе, например, одна фаза выдает 22В и 10А, в этом случае выход «звезды» будет 38,1В (22*1,732) и 10А. Ток остался таким же как и у одной фазы, т.к. при соединении «звездой» фазы соединяются последовательно. При соединении «треугольником» мы получим 22В и 17,32А (10*1,732). Если посчитать мощность двух схем, то получится: 22*17,32=381Вт и 38,1*10=381Вт. И в чем же преимущества каждой схемы?

Обычно сопротивление «треугольника» в 3 раза ниже чем сопротивление «звезды». А т.к. по обмоткам течет ток, то будут и потери мощности. Сопротивление «звезды» нашего генератора составляет 1,5 ом, можем посчитать выходную мощность. При 600 об/мин и соединении «звездой» мы получили напряжения 38В. Это около 16 об/мин на 1В. Т.о. на 1000 об/мин мы можем получить 62,5В. Вычтем напряжение заряжаемого аккумулятора (12,6В) получим 49,9В на выходе. При сопротивлении 1,5 Ом ток будет 49,9/1,5=33,26А. Т.о. на нагрузке получим мощность 33,26*12,6=419 Вт. Не так уж и плохо.

Преимущество «звезды» в более высоком напряжении при более низких оборотах, что означает, что наш тестовый генератор сможет начать заряжать аккумулятор на 12,6В уже при 200 об/мин. «Треугольнику» для начала заряда понадобится достичь 340 об/мин.

Но при этому, преимущество треугольника в том, что, достигнув более высоких оборотов, он сможет выдать более высокую мощность.

Теперь надо соединить выходы и преобразовать переменный ток в постоянный для зарядки аккумуляторов. Ниже показаны две различные схемы соединения 3-х-фазных генераторов: «звезда» и «треугольник» и два разных типа выпрямителей для них: на диодах и готовых диодных мостах (диодные сборки для однофазных выпрямителей). Любой из представленных выпрямителей может использоваться для каждой конфигурации фаз.

Ну и напоследок пара фактов о 3-х-фазном токе.

  • Большинство современных генераторов в мире – 3-х-фазные.
  • Концепция 3-х фаз изначально была предложена Никола Тесла, он и доказал их превосходство над однофазными.
  • В одном диапазоне мощностей три фазы обычно на 150% более эффективны одной.
  • В однофазных системах мощность падает до нуля 3 раза за каждый оборот генератора, в 3-х-фазных – падение мощности до нуля в течение оборота не происходит. Мощность, подаваемая на нагрузку одинакова в любой момент.
  • В 3-х-фазном генераторе сечение проводов может быть на 25% меньше чем сечение проводов в однофазном при одинаковой мощности.

Итак, три фазы, это не намного сложнее одной, но гораздо более эффективно!!!

Оригинал статьи на английском языке на сайте WindStuffNow.Com

Оставьте комментарий