Расчет нагрузки на стойку

Содержание

Основы расчета деревянных центрально-сжатых колон, стоек, подкосов.

Отличие колонн, стоек или подкосов от балок в том, что колонны, стойки и подкосы работают как правило только на сжатие, в то время как балки должны стойко сопротивляться изгибающему моменту, хотя и сжатие при этом также могут испытывать. С точки зрения строительной механики не имеет значения, из какого материала изготовлен элемент, работающий на сжатие, из металла, железобетона, пластика, стекла или древесины. Любой такой элемент, назовем его стержнем, должен выдерживать прикладываемую к нему нагрузку:

σ = N/F ≤ Rс (1.1)

где σ — внутренние нормальные напряжения, возникающие в поперечном сечении сжимаемого элемента, кг/см2;

N — расчетная нагрузка, кг;

F — площадь поперечного сечения колонны, стойки или любого другого элемента, работающего на сжатие, см2;

Rс — расчетное сопротивление древесины сжатию по пределу текучести, кг/см2. Для сосны первого сорта относительно небольшого сечения расчетное сопротивление составляет 140 кгс/см2. Чем ниже сорт, тем меньше расчетное сопротивление. При сечениях элемента более 11х11 см, а также для других пород древесины расчетное сопротивление можно определить по соответствующей таблице.

Суть данной формулы проста —

внутренние нормальные напряжения возникающие в сжимаемых элементах, должны быть меньше или равны расчетному сопротивлению. Это обеспечивает необходимую прочность элемента

Таким образом расчет на прочность по формуле (1.1) можно отнести к расчету по первой группе предельных состояний.

Как видим, по уровню сложности задача относится ко второму, максимум к третьему классу общеобразовательной школы. Однако с точки зрения теории сопротивления материалов все далеко не так просто по ряду причин:

1. Древесина — неоднородный природный материал, к тому же анизотропный. На несущую способность деревянных элементов влияют сучки, трещины, влажность и множество других факторов. В частности влияние размеров сечения учитывается, как мы уже видели разным значением расчетного сопротивления, чем меньше размеры сечения, тем больше влияние возможных дефектов древесины на несущую способность и потому для таких элементов расчетное сопротивление меньше.

2. Формула (1.1) предполагает, что сосредоточенная нагрузка N прикладывается точно к центру тяжести О поперечного сечения сжимаемого элемента. В действительности нагрузка практически всегда будет распределенной, причем далеко не всегда равномерно распределенной, так как идеально выдержать геометрические размеры деревянных элементов конструкции — нереально. Если торец (опорная площадка) колонны или стройки получен в результате распила ручной пилой по дереву — это одно, а если циркулярной пилой, то это совсем другое. В первом случае из-за возможных отклонений в перпендикулярности распила, а также в зависимости от размера зубьев пилы, нагрузка на колонну или стойку будет передаваться не по всей площади сечения, а только там где древесина различных элементов контактирует между собой. Помимо уменьшения площади контакта это также приводит и к появлению эксцентриситета приложения нагрузки. А если есть эксцентриситет, то есть и продольный изгибающий момент, действующий в поперечном сечении колонны или стойки.

3. С точки зрения строительной механики рассчитываемые элементы в данном случае прямолинейны, это означает что все центры тяжести О поперечных сечений рассчитываемых элементов расположены на одной прямой — центральной оси. Но древесина — неоднородный материал, имеющий разную плотность в зависимости от процентного содержания сердцевины, ядра и заболони в поперечном сечении, а кроме того, в результате сушки пиломатериалы часто изменяют свою форму, проще говоря, выгибаются, иногда так, что вообще использование сильно поведенных элементов ставится под вопрос. А это означает, что центры тяжести поперечных сечений по длине колонны или стойки будут смещены относительно центральной оси, что опять же можно рассматривать как эксцентриситет приложения нагрузки.

4. Под действием приложенной нагрузки колонна или стойка очень редко равномерно сжимается подобно пружине по вышеуказанным причинам, но очень часто выгибается в ту или иную сторону, напоминая при этом обычную балку, и такое поведение деревянных элементов следует учитывать при расчетах.

Конечно же, учесть все вышеуказанные отклонения и дефекты для стоек, колон или подкосов, которые в процессе проектирования существуют только на бумаге или в голове проектировщика — нереально. А вот добавить в формулу (1.1) некий поправочный коэффициент, максимально учитывающий вышеизложенные факторы — реально вполне. Таким коэффициентом является коэффициент продольного изгиба φ:

σ = N/φF ≤ Rc (1.2)

Таким образом мы получили формулу для проверки сжимаемых элементов на устойчивость.

Значение коэффициента продольного изгиба φ зависит от гибкости сжимаемого элемента λ. А гибкость элемента в свою очередь зависит от соотношения длины сжимаемого элемента к радиусу инерции поперечного сечения. Физический смысл понятия гибкость сжимаемого элемента приблизительно следующий:

проще говоря продольный изгиб, а это значит, что сжимающие напряжения в различных точках поперечного сечения будут неодинаковыми.

Например, куб (рисунок 250.1. а) при действии некоторой равномерно распределенной нагрузки по всему сечению будет деформироваться (сжиматься) достаточно равномерно, соответственно гибкость куба будет близка к 0 и потому значение коэффициента продольного изгиба будет близко к 1. Согнуть куб практически не возможно. А если это будет не куб, а стойка квадратного сечения (рисунок 250.1. б), имеющая точно такие же размеры поперечного сечения, то чем больше будет длина стойки, тем больше будет гибкость стойки и значит вероятность того, что стойка не просто сожмется, а еще и выгнется, будет выше. Например, металлический пруток квадратного сечения имеет достаточно большую расчетную прочность и при сечении 2х2 см может выдерживать нагрузки на растяжение до 8-10 тонн (в зависимости от класса стали) вне зависимости от длины. В то же время чем больше будет длина прутка, тем меньше будет прикладываемая нагрузка, при которой центр тяжести поперечного сечения прутка посредине длины начнет смещаться относительно оси y или z, увеличивая таким образом величину эксцентриситета для данного сечения, а чем больше эксцентриситет, тем больше будут нормальные напряжения в этом поперечном сечении, и в итоге пруток согнется (потеряет устойчивость). При достаточно большой длине это может произойти даже под действием собственного веса. А стойка прямоугольного сечения (рисунок 250.1. в) скорее всего выгнется относительно той оси, относительно которой прочностные характеристики стойки меньше:

Рисунок 250.1. Эпюры внутренних напряжений в поперечных сечениях элементов с различными геометрическими параметрами.

На рисунке 250.1 достаточно условно (для большей наглядности) показаны эпюры внутренних сжимающих напряжений σ относительно главных осей z и у, при действии одинаковой по значению распределенной нагрузки на стержни (стойки) из одного материала но с различными геометрическими параметрами. Если посмотреть на деформации, которые возникают в сжимаемых элементах под действием этой нагрузки, то мы увидим, что эпюры сжимающих напряжений очень похожи на величину деформации сжимаемых элементов и в этом нет ничего удивительного, так как эти самые деформации и возникают в результате действия сжимающих напряжений. Более подробно это рассматривалось в статье: «Основы сопромата. Расчет прогиба балки», но сейчас нас интересует другое, а именно:

Так как на куб и два стержня действует одинаковая нагрузка, то и суммарное значение возникающих сжимающих напряжений для всех трех поперечных сечений одинаковое. Однако для куба эти напряжения равномерны (условно, неоднородность материала и прочие факторы конечно влияют, но будем считать влияние этих факторов незначительным), нет ни максимальных ни минимальных значений. В этом случае гибкость куба λ = 0, а коэффициент продольного изгиба φ = 1.

Для стержня (стойки) квадратного сечения по перечисленным выше причинам распределение сжимающих напряжений в плоскости поперечного сечения будет уже не таким равномерным. В результате даже небольшого продольного изгиба в поперечном сечении стойки будут возникать как сжимающие так и растягивающие напряжения, при этом эпюра сжимающих напряжений от действующей нагрузки будет точно такой же, как и для куба, однако суммарная эпюра будет выглядеть приблизительно так, как показано на рисунке 250.1. б. А это означает что максимальные сжимающие напряжения (на рисунке показаны красным цветом), возникающие ближе к граням сечения, будут больше среднего значения (показано синим цветом), которое используется при расчете на прочность.

Для стержня (стойки) прямоугольного сечения прогиб произойдет только вдоль оси z, так как момент сопротивления, да и момент инерции относительно оси у для такого сечения будет минимальным. При этом в поперечном сечении могут возникать не только сжимающие но и растягивающие напряжения, от чего это зависит мы узнаем чуть позже. А пока еще раз посмотрим на эпюры напряжений.

Если бы мы прикладывали к кубу и стержням максимально допустимые по несущей способности нагрузки, то очевидно, что для соблюдения условий формулы (1.1) максимальные значения сжимающих напряжений (обозначены красным цветом) должны быть одинаковыми для куба и двух стержней, а это означает, что среднее значение сжимающих напряжений (обозначено синим цветом) для стержня квадратного сечения будет меньше, чем для куба, а для стержня прямоугольного сечения еще меньше, чем для стержня квадратного сечения. Таким образом эти эпюры можно рассматривать как графическое отображение коэффициента продольного изгиба. Если бы эпюры были построены точно, то приблизительное значение коэффициента продольного изгиба для стержня квадратного сечения, показанного на рисунке 250.1. б) составило φ ≈ 0.75-0.8. А для стержня прямоугольной формы, показанного на рисунке 250.1. в) φ ≈ 0.4-0.45.

Однако картинки — картинками, но для расчета конструкций нужны более точные цифры. СНиП II-25-80(1988) предлагает следующие формулы для расчета коэффициента продольного изгиба в зависимости от значения гибкости:

При λ ≤ 70

φ = 1 — a(λ/100)2 (1.3)

где коэффициент а = 0,8 — для древесины или а = 1 — для фанеры;

при λ > 70

φ = A/λ2 (1.4)

где коэффициент А = 3000 — для древесины или А = 2500 — для фанеры.

Раньше для определения этого соотношения использовались таблицы или графики, в принципе ими можно пользоваться и сейчас, например полученные по графику 250.1 значения будут достаточно близкими к определенным по формулам:

250.2 График зависимости коэффициента продольного изгиба от гибкости.

Удобство данного графика еще и в том, что для определения гибкости необязательно сначала находить радиус инерции, а можно сразу определить коэффициент продольного изгиба по соотношению расчетной длины к высоте или ширине поперечного сечения или по отношению расчетной длины к диаметру, если рассчитываемый стержень имеет круглое сечение. Тем не менее знать, что же такое расчетная длина и почему она бывает разной и что такое радиус инерции, все-таки надо.

Математически гибкость элемента выражается так:

λ = lo/i или λ = lo/ru (1.5)

где lo — расчетная длина стойки (стержня, колонны, подкоса или любого другого сжимаемого элемента).

Расчетная и реальная длина колонны — разные понятия.

Расчетная длина сжимаемого элемента зависит от способа закрепления концов сжимаемого элемента. Варианты значений расчетной длины показаны на графике 250.1 справа. Почему расчетная длина при разных способах закрепления имеет различные значения описывается отдельно.

i или ru — радиус инерции сечения, еще его называют радиусом ядра сечения. Постараюсь объяснить, что такое радиус инерции, как можно более просто и кратко.

Понятие радиус инерции или радиус ядра сечения

полностью справедливо только для круглых сечений. У сечений круглой формы ядро сечения действительно представляет собой круг (рис.250.3. а), у сечений сложной геометрической формы ядро сечения как правило представляет собой эллипс (рис.250.3. г), а у сечений прямоугольной формы ядро сечения представляет собой ромб (рис.250.3. в) или квадрат — для сечений квадратной формы (рис.250.3. б):

Рисунок 250.3. Ядра сечения и радиусы инерции для сечений различных геометрических форм.

Физический смысл ядра сечения следующий

нагрузка к сжимаемому элементу далеко не всегда прикладывается к центру тяжести поперечного сечения. На рисунке 250.1 показана равномерно распределенная нагрузка, равнодействующая которой приложена именно к центру тяжести О. Но если бы к кубу (рис.250.1 а) была приложена неравномерно распределенная нагрузка или некая сосредоточенная нагрузка N, то суммарная эпюра сжимающих напряжений зависела бы от точки приложения сосредоточенной нагрузки или равнодействующей неравномерно распределенной нагрузки. Если бы сосредоточенная нагрузка прикладывалась относительно недалеко от центра тяжести поперечного сечения, то эпюра сжимающих напряжений выглядела бы, как на рис.250.1 б. А при значительном значении эксцентриситета приложения нагрузки эпюра сжимающих напряжений выглядела бы как на рис.250.1. в), т.е. в поперечном сечении действовали не только сжимающие, но и растягивающие напряжения. А при некотором (не показанном на рисунке 250.1) значении эксцентриситета эпюра сжимающих напряжений представляла бы собой треугольник.

Так вот, радиус ядра сечения — это и есть эксцентриситет, при котором эпюра напряжений представляет собой треугольник

Таким образом радиус ядра круглого сечения — это действительно радиус некоей окружности, на которой расположены эксцентриситеты нагрузки, при которых эпюра сжимающих напряжений представляет собой треугольник. И получается, что если сосредоточенная нагрузка или равнодействующая неравномерно распределенной нагрузки будет приложена в любой точке внутри этой окружности, то в поперечном сечении будут действовать только сжимающие напряжения.

Область внутри окружности, описываемой радиусом инерции, называется ядром сечения

На рисунке 250.3 ядра сечений обозначены зеленым цветом, для наглядности размеры ядер изменены.

Понятие ядра настолько универсально, что его используют даже такие далекие от сопромата люди, как seo-оптимизаторы, обильно насыщающие свою речь выражениями типа: составление семантического ядра, или анализ семантического ядра. На seo-слэнге под семантическим ядром подразумевается набор ключевых слов сайта и эти ключевые слова должны подбираться, а затем и использоваться так, чтобы реакция поисковиков была только положительной. Все остальные слова — это просто текст. Но не будем отвлекаться и вернемся к радиусу ядра сечения. Почему радиус ядра сечения называется также радиусом инерции? Оказывается, если умножить площадь поперечного сечения на квадрат радиуса ядра сечения, то мы получим момент инерции:

Fi2 = I (1.6)

Определение и физический смысл момента инерции здесь также не рассматривается, но будет достаточно сказать, что определить момент инерции сечения практически любой геометрической формы не сложно. Таким образом, зная момент инерции и площадь сечения рассчитываемого элемента, можно достаточно просто определить радиус инерции:

(1.7)

При этом конечно же нельзя забывать, что при расчетах нужно использовать значение момента инерции поперечного сечения относительно той из осей, относительно которой момент инерции будет наименьшим (например, для поперечного сечения, показанного на рисунке 250.1 в) и на рисунке 250.3 в) момент инерции следует определять относительно оси у, а для элементов квадратного или круглого сечения момент инерции относительно оси z и относительно оси у будет одинаковым и потому выбор оси принципиального значения не имеет). Для того, чтобы определить моменты инерции для поперечных сечений сложной геометрической формы, нужно сначала определить положение главных центральных осей u и v, затем уже определять моменты инерции относительно этих осей. Но так глубоко уходить в пески безбрежной пустыни сопромата мы не будем, к тому же данная статья посвящена расчету на сжатие деревянных элементов конструкций, а сечения деревянных элементов имеют как правило или прямоугольную, или квадратную, или круглую форму.

Для элементов прямоугольного или квадратного сечения радиус инерции можно определить, не высчитывая предварительно момент инерции и площадь сечения. Так, например для прямоугольного сечения, показанного на рисунке 250.3. в) наименьший момент инерции будет относительно оси у и составит:

Iy = hb3/12 (1.8)

А так как площадь прямоугольного сечения равна:

F = hb (1.9)

то:

i = (b2/12)1/2 (1.7.2)

Для сжимаемых элементов с поперечным сечением квадратной формы (рис.250.3. б):

i = (a2/12)1/2 (1.7.3)

Для сжимаемых элементов круглого сечения (рис.250.3. a):

i = (D2/16)1/2 (1.7.4)

Если для определения коэффициента продольного изгиба вы будете пользоваться графиком 250.1, то не забывайте, что в соотношении lo / b под шириной имеется в виду минимальный размер поперечного сечения.

Основы расчета деревянных внецентренно-сжатых или сжато-изгибаемых элементов.

Если нагрузка к рассчитываемому элементу будет прикладываться с эксцентриситетом, то при расчете следует учесть изгибающий момент, возникающий в результате эксцентриситета:

σ = N/φF + М/W ≤ Rc (2.1)

Где момент равен:

М = Ne (2.2)

Ну а что такое изгибающий момент и момент сопротивления, рассказывается отдельно. Здесь лишь скажу, что определение момента сопротивления немного напоминает определение коэффициента продольного изгиба:

В поперечном сечении рассчитываемого на действие изгибающего момента также действуют нормальные напряжения. Однако по не обсуждаемым здесь причинам в поперечном сечении изотропного изгибаемого элемента прямоугольного или квадратного сечения в одной половине сечения действуют сжимающие напряжения, а в другой половине сечения действуют растягивающие напряжения, выглядит это приблизительно так:

Рисунок 149.3.3. Приведение изгибающего момента к равномерно изменяющейся нагрузке, эквивалентной действующим в поперечном сечении напряжениям.

Как видно из вышеприведенного рисунка, эпюра нормальных напряжений для поперечного сечения при действии изгибающего момента представляет собой не просто треугольник а два треугольника. А это означает, что материал конструкции работает на сжатие или растяжение еще менее эффективно, чем материал сжимаемых элементов. Т.е. эффективность снижается как минимум в 2 раза из-за того что материал работает одновременно и на растяжение и на сжатие. При этом равнодействующая равномерно изменяющейся нагрузки, создающей сжимающие или растягивающие напряжения будет находиться на расстоянии 2/3 высоты треугольника от центра тяжести сечения, почему это так — изучается в школе на уроках геометрии и здесь не обсуждается. Но если рассматривать момент сопротивления как площадь сечения, умноженную на некий поправочный коэффициент, учитывающий неравномерность и неоднозначность напряжений, возникающих в поперечном сечении расчитываемого элемента, то мы получим значение момента сопротивления:

W = F · 1/2 · h/3 = bh · h/6 = bh2/6 (2.3)

Где 1/2 означает, что материал сечения работает одновременно и на растяжение и на сжатие или что расчетная нагрузка действует только на половину рассчитываемого сечения, h/3 — расстояние от центра тяжести поперечного сечения до точки приложения равнодействующей силы от равномерно изменяющейся нагрузки (так как высота треугольника равна h/2, то 2/3 от высоты треугольника составляют h/2 · 2/3 = h/3).

Момент инерции в свою очередь характеризует суммарную величину деформации рассчитываемого элемента (подробности изложены отдельно):

Рисунок 174.5.2. Предполагаемая (для наглядности) суммарная деформация балки.

Так как расстояния между атомами и молекулами материала уменьшаются при действии сжимающих напряжений (более правильно было бы сказать, что под действием нагрузок материал деформируется, при этом расстояния между атомами и молекулами материала изменяются, а по-прежнему действующие межатомные и межмолекулярные связи пытаются восстановить первоначальное положение и сила, с которой они пытаются это сделать — это и есть сжимающие или растягивающие напряжения, но для простоты изложения оставим все, как есть) и увеличиваются при действии растягивающих напряжений, то момент инерции позволяет определить суммарное изменение этих расстояний по всей длине рассчитываемого элемента, в самой верхней или в самой нижней точке поперечного сечения, т.е. там, где действующие напряжения максимальны и соответственно максимально изменение расстояний между атомами или молекулами материала (на рисунке 174.5.2 это расстояние обозначено Δх). Это в свою очередь позволяет определять углы наклона поперечных сечений и изменения положения центра тяжести по всей длине рассчитываемого элемента. Таким образом, для того, чтобы определить момент инерции, нужно умножить момент сопротивления на расстояние от центра тяжести прямоугольного сечения до самой верхней или самой нижней точки сечения:

I = W · h/2 = bh3/12 (2.4)

Вот в принципе и все основные теоретические предпосылки к расчету центрально-сжатых и сжато-изгибаемых элементов деревянных конструкций. Пример расчета деревянной стойки приводится отдельно.

P.S. Я прекрасно понимаю, что человеку, впервые столкнувшемуся с расчетом строительных конструкций, разобраться в тонкостях и особенностях вышеизложенного материала бывает не просто, но тратить тысячи или даже десятки тысяч рублей на услуги проектной организации вы все равно не хотите. Что ж, я готов помочь. Больше подробностей смотрите в статье «».

Необходимые пояснения к расчетам

  • Высота и ширина определяют площадь сечения и механическую прочность балки.
  • Материал древесины: сосна, ель или лиственница – характеризует прочность балок, их стойкость к прогибам и излому, другие особые эксплуатационные свойства. Обычно отдают предпочтение сосновым балкам. Изделия из лиственницы применяют для помещений с влажной средой (бань, саун и т.п.), а балки из ели используют при строительстве недорогих дачных домов.
  • Сорт древесины влияет на качество балок (по мере увеличения сорта качество ухудшается).
  • 1 сорт. На каждом однометровом участке бруса с любой стороны могут быть здоровые сучки размером 1/4 ширины (пластевые и ребровые), размером 1/3 ширины (кромочные). Могут быть и загнившие сучки, но их количество не должно превышать половины здоровых. Также нужно учитывать, что суммарные размеры всех сучков на участке в 0,2 м должны быть меньше предельного размера по ширине. Последнее касается всех сортов, когда речь идет о несущей балочной конструкции. Возможно наличие пластевых трещин размером 1/4 ширины (1/6, если они выходят на торец). Длина сквозных трещин ограничивается 150 мм, брус первого сорта может иметь торцевые трещины размером до 1/4 ширины. Из пороков древесины допускаются: наклон волокон, крень (не более 1/5 площади стороны бруса), не более 2 кармашков, односторонняя прорость (не более 1/30 по длине или 1/10 — по толщине или ширине). Брус 1 сорта может быть поражен грибком, но не более 10% площади пиломатериала, гниль не допускается. Может быть неглубокая червоточина на обзольных частях. Обобщая вышесказанное: внешний вид такого бруса не должен вызывать какие-либо подозрения.
  • 2 сорт. Такой брус может иметь здоровые сучки размером 1/3 ширины(пластевые и ребровые), размером 1/2 ширины (кромочные). По загнившим сучкам требования, как и для 1 сорта. Материал может иметь глубокие трещины длиной 1/3 длины бруса. Максимальная длина сквозных трещин не должна превышать 200 мм, могут быть трещины на торцах размером до 1/3 от ширины. Допускается: наклон волокон, крень, 4 кармашка на 1 м., прорость (не более 1/10 по длине или 1/5 – по толщине или ширине), рак (протяжением до 1/5 от длины, но не больше 1 м). Древесина может быть поражена грибком, но не более 20% площади материала. Гниль не допускается, но может быть до двух червоточин на 1 м. участке. Обобщим: сорт 2 имеет пограничные свойства между 1 и 3, в целом оставляет положительные впечатления при визуальном осмотре.
  • 3 сорт. Тут допуски по порокам больше: брус может иметь сучки размером 1/2 ширины. Пластевые трещины могут достигать 1/2 длины пиломатериала, допускаются торцевые трещины размером 1/2 от ширины. Для 3 сорта допускается наклон волокон, крень, кармашки, сердцевина и двойная сердцевинаы, прорость (не более 1/10 по длине или 1/4 — по толщине или ширине), 1/3 длины может быть поражена раком, грибком, но гнили не допускаются. Максимальное количество червоточин — 3 шт. на метр. Обобщая: 3 сорт даже невооруженным глазом выделяется не самым лучшим качеством. Но это не делает его непригодным для изготовления перекрытий по балкам.Подробнее про сорта читайте ГОСТ 8486-86 Пиломатериалы хвойных пород. Технические условия;
  • Пролет – расстояние между стенами, поперек которых укладываются балки. Чем он больше, тем выше требования к несущей конструкции;
  • Шаг балок определяет частоту их укладки и во многом влияет на жесткость перекрытия;
  • Коэффициент надежности вводится для обеспечения гарантированного запаса прочности перекрытия. Чем он больше, тем выше запас прочности
  • Наш онлайн-калькулятор позволит вам рассчитать параметры деревянных балок и подобрать оптимальную конфигурацию перекрытия.

    Как влияет сечение сруба на его надежность?

    При создании кровли обязательным условием ее надежности является сечение применяемого бруса и порода древесины, что влияет на долговечность.

    Выполняя расчет собственноручно, потребуется учесть такие показатели, как:

    • какую массу имеют все кровельные строительные материалы;
    • вес отделки мансарды или чердака;
    • для стропильных опор и балок учитывается расчетное значение;
    • учитывается тепловое и осадочное воздействие природы.

    Помимо этого придется указать:

    • расстояние между балками;
    • длина промежутка между стропильных опор;
    • принцип крепления стропил и конфигурация ее фермы;
    • тяжесть осадков и воздействие ветров на конструкцию;
    • остальные факторы, которые могут повлиять на надежность конструкции.

    Все эти расчеты можно выполнить собственноручно при помощи специальных формул. Но более простым как по времени, так и по качеству будет расчет нагрузки бруса с помощью специальных программ, а еще лучше, когда эти подсчеты выполнит профессионал.

    Каким требованиям должен отвечать брус?

    Чтобы вся стропильная система была крепкой и надежной к качеству строительных материалов придется подойти со всей ответственностью. К примеру, на брусе должны отсутствовать дефекты (трещины, сучки и т. п.), а его влажность не превышать показатель в 20%. Помимо этого сруб любого размера (50х50, 100х100, 150х150 и т. д.) обязательно обрабатывается защитными средствами от шашеля и других насекомых, гниения и возгорания.

    Также делая выбор материала, придется учесть, что на брус могут оказываться дополнительные нагрузки, такие как:

    • Непрерывные нагрузки бруса. К их числу относятся непосредственно сам вес всей стропильной системы, в которую входит: облицовочные и кровельные материалы, утеплители и т. д. Полученные данные на каждый материал суммируются.
    • Кратковременные нагрузки могут быть нескольких видов: особо редкие, непродолжительные и длительного воздействия. К первому виду относятся происшествия, которые случаются весь редко (землетрясения, наводнения и т. д.). Непродолжительными являются ветровые и снеговые воздействия, передвижение людей ремонтирующих крышу и т. п. Длительными нагрузками являются все остальные воздействия, осуществляющиеся в определенном промежутке времени.

    Определяем ветровую и снеговую нагрузку на брус

    Чтобы определить какую нагрузку выдерживает брус (100х100, 150х150,50х50 и др.) при ветровом и снеговом воздействии можно воспользоваться определенными таблицами.

    Для выяснения снегового воздействия на стропила разного сечения применяют формулу S=Sg*µ.

    • Sg – является расчетным весом снега лежащего на земле, который воздействует на 1 м².

    Важно! Это значение нельзя сравнивать с нагрузкой на крышу.

    • µ – это значение нагрузки на поверхность крыши, что изменяется от горизонтального до наклонного. Данный коэффициент может принимать различные значения, все зависит от уклона крыши.

    При уклоне поверхности до 25 градусов µ принимает значение 1.

    Когда наклон крыши лежит в диапазоне 25-60 градусов, µ составляет 0,7.

    При уклоне в 60 и более градусов коэффициент µ не принимается в расчет так, как практически не воздействует на стропильную систему.

    Помимо снеговой нагрузки перед строительством стропильной систему вычисляется ветровая нагрузка на деревянный брус 50 на 50, 100х100 и т. д. Если эти показатели не учесть, в результате все может закончиться плачевно. Для вычисления применяются табличные значения и формула W=Wo*k.

    Wо – является табличным значением ветровой нагрузки по каждому отдельному региону.

    k – это давление ветра, что имеет различные значения при изменении высоты. Эти показатели также являются табличными.

    Изображенная на фото, таблица нагрузок бруса при воздействии стихий, несложная в использовании, нужно только помнить, что в 1-м столбце приведены значения для степных, пустынных регионов, рек, озер, лесостепи, тундр, берегов морей и водохранилищ. В следующей колонке внесены данные относящиеся к городской местности и районов с 10 метровыми препятствиями.

    Важно! В расчетах желательно применять информацию по направлению движения ветра, ведь это может внести важную поправку к результатам.

    По каким правилам рассчитывается нужное сечение бруса?

    На подбор сечения сруба для стропильной системы влияет несколько параметров:

    • какая длина стропильной стройки;
    • расстояние между каждым последующим брусом;
    • полученные результаты расчетов нагрузки для соответствующего района.

    На сегодняшний день для каждого определенного района существуют специальные таблицы с уже внесенными данными по нагрузочным значениям для стропильных систем. Как пример можно привести Московскую область:

    • чтобы установки мауэрлат можно применить брус сечением не ниже 100х100,150х100 и 150х150;
    • брус 200х100 можно использовать для диагональных ендов и стропильных опор (ног);\
    • прогоны можно создать с древесины 100х100, 150х100 или 200х100;
    • сруб 150х50 станет оптимальным решением для затяжки;
    • в качестве стоек лучше всего использовать сруб 150х150 или 100х100;
    • стропило 150х50 подойдет для карниза, подкосов или же кобылки;
    • ригели лучше всего установить со стропил 150х100 или 200х100;
    • В качестве обшивки или лобовой можно применить доску не менее 22х100.

    Указанные выше данные являются оптимальными, то есть менее этого значения материал применять нельзя. Также все размеры указаны в миллиметрах.

    Подведем итог

    Для создания надежной и долговечной деревянной конструкции нужно тщательно просчитать все возможные нагрузки, после чего только приобретать брус. Если правильность расчетов у вас вызывает сомнения лучше всего воспользоваться услугами профессионала или же применить специальную программу, которой будет вычислена допустимая нагрузка на брус (150х150, 100х100 и др.).

    Сегодня для строительства используются разнообразные материалы, но чаще всего пользуются спросом деревянные балки. Они применяются для сооружения стропильной системы, для организации перекрытий чердаков, подвалов и между этажами. Именно деревянные конструкции используются при сооружения пола по лагам. Этот материал отличается прочностью, возможностью выдерживать многочисленные нагрузки, экологичностью и относительно невысокой стоимостью. Если используется деревянная балка, необходимо предварительно провести расчеты, касающиеся , их длины. Если опыта нет, то работу лучше доверить специалистам.

    Нагрузки на деревянные конструкции

    Если используются балки перекрытия, следует учесть, какая нагрузка будет оказываться в целом. При этом учитывается:

    • собственный вес деревянной балки;
    • вес от межбалочного заполнения, т. е. утеплителя, гидроизоляции и прочего;
    • обшивка.

    Расчет выполняется с учетом того, какой утеплитель используется, какой шаг балок принимается (от этого зависит количество материала). Следует к вопросу утепления отнестись серьезно. Холодный чердак приведет к повышению расходов на отопление, это примерно 15% дополнительных затрат . Для утепления чердака можно приобретать стекловолокно или базальтовые плиты. Они относительно легкие и монтируются быстро.

    Учитывается вес от мебели, техники и людей. Обычно значение берется в среднем в 50 кг/м² для подшивки и межбалочного наполнителя. Эксплуатационная нагрузка по СНиП 2.01.07-85 для перекрытия в таком случае будет равна:

    70 * 1,3 = 90 кг/м², при этом

    «70» – норматив, а 1,3 – так называемый коэффициент запаса.

    Общее значение составляет:

    50 + 90 = 130 кг/м².

    Следует значение округлить в большую сторону, получается цифра 150. Если для утепления будет приобретаться тяжелый материал, то общее значение будет иным. Оно составит 245 или 250 кг/м².

    50 + 1,3*150, где 150 кг/м² – это нормативное значение.

    Если чердак используется в качестве жилой площади, то расчетный уровень нагрузки повышается уже до 350 кг/м².

    Об этом не стоит забывать, иначе конструкция не получится столь прочной, как это необходимо. Для обычных межэтажных используется нормативное значение в 350-400 кг/м².

    Сечение и прочие параметры

    Для измерения сечения балок из древесины используются такие данные, как:

    Таблица 1. Выбор сечения стропильных систем.

    • длина изделия для устройства перекрытия – L;
    • высота изделия – h;
    • ширина балки – s.

    Для строительных работ рекомендуется применять изделия прямоугольного сечения, при этом высота и ширина должны находиться в пропорции 1,4:1. Оптимальная высота должна составлять 100-300 мм, а ширина – 40-200 мм (зависит от назначения укладки материала). При выборе высоты необходимо ориентироваться на то, какой именно теплоизолятор будет покупаться, так как после укладки он должен идти вровень с поверхностью, не образовывать после зашивки полостей и зазоров.

    Если же для работы применяются бревна, то диаметр лучше всего брать равным 110-300 мм – это самый оптимальный размер. При устройстве перекрытия из деревянных брусьев внимание следует уделить тому, каким будет шаг укладки. Он может быть равен 30-120 см, все зависит от особенностей будущего строения и предполагаемых нагрузок. Часто шаг выбирается исходя из того, каким будет утеплитель. Для строительства дома по каркасной технологии он должен быть равен используемому шагу стоек. Например, если вертикальные стойки стен монтируются с шагом в 60 см, то и расстояние между лагами делается равным 60 см.

    Как вычисляются данные? Есть специально разработанные нормативы, по ним и проводится любой расчет. Пользуясь ими, необходимо помнить, что прогиб для межэтажного перекрытия может составлять 1/350, а для чердачного – 1/200 длины изделия.

    Таблица 2. Допустимые сечения балок междуэтажных и чердачных перекрытий в зависимости от пролета при нагрузке 400 кг на 1 м2.

    Например, когда проводится расчет с учетом сечения балки, соблюдаются такие шаги и длины пролета:

    • сечение деревянного бруса 75*100 мм, шаг – 60 см, пролет – 200 см;
    • 75*150 мм, шаг – 100 см, пролет – 200 см;
    • 75*200 мм, пролет – 200 см и т.д.

    Такие данные используются в том случае, когда сооружается межэтажное перекрытие при планируемой нагрузке в 400 кг/м². Если она будет на уровне 150-350 кг/м² для чердачного (реже межэтажного) перекрытия, то брать необходимо такие данные:

    • нагрузка 150 кг/м², пролет в 300 см, сечение бруса 50*140 мм;
    • 200 кг/м², пролет – 300 см, сечение бруса 50*160 мм и т. д.

    Указанные данные приведены в таблице 1.

    Если для сооружения перекрытия будут использоваться бревна, то для расчета применяются данные, указанные в таблице 2 (при весе в 400 кг/м²). При использовании приведенных данных для расчета необходимо помнить, что изделия следует брать цельные, не имеющие дефектов, в том числе трещин, гнили, выпадающих сучков.

    При использовании деревянных брусьев для строительства стоит предельное внимание уделить расчетам. Это касается вычисления сечения и шага перекрытия, соответствие его длине пролета. Необходимо сразу провести все вычисления, не забыть, что для чердачных, подвальных и межэтажных конструкций нагрузки будут совершенно разными.

    Деревянные балки перекрытий часто являются наиболее экономичным вариантом при строительстве частного загородного дома. При этом надо отметить, что деревянные балки легки в изготовлении и просты при монтаже, имеют низкую теплопроводность по сравнению со стальными или железобетонными конструкциями. Главный недостаток деревянных балок – низкая механическая прочность, требующая больших сечений, а также низкая устойчивость к поражению микроорганизмами и насекомыми-древоточцами и горючесть. Поэтому деревянные балки перекрытий требуется тщательно рассчитывать на требуемую нагрузку и обрабатывать антисептическими и огнезащитными средствами.
    В стену балки заводят не менее чем на120 мми устраивают гидроизоляцию по периметру, кроме торца. Кроме того желательно закрепить балку анкером, заделанным в стену.
    Сечение бруса и шаг укладки балок рассчитывается при проектировании дома в зависимости от ширины перекрываемого пролета. Если такого проекта нет, то сечение бруса выбирают побольше, а шаг укладки балок поменьше. Лучшее сечение для деревянной балки – прямоугольное с соотношением ширине к высоты1: 1,4. Так при ширине балки150 мм, ее высота должна быть около210 мм. При этом следует отметить, что оптимальный пролет для деревянных балок находится в пределах 2,5-4,0 метра. Балки перекрытия укладывают по короткому сечению пролета. Шаг монтажа деревянных балок каркасного строения рекомендуется выбирать равным шагу установки стоек каркаса.
    При выборе сечения деревянной балки учитывают нагрузку собственного веса перекрытия, которая для балок междуэтажных перекрытий, как правило составляет 190-220 кг/м 2 , и нагрузку временную (эксплуатационную), значение которой принимают равной 200 кг/м 2 . Поэтому рекомендуется рассчитывать сечение деревянных балок на нагрузку на перекрытие равное 400кг/м 2 .
    Определить сечение деревянных балок перекрытия при нагрузке 400кг/м 2 в зависимости от длины пролета и шага установки можно по таблице 1.

    Таблица 1. Оптимальные сечения деревянных балок перекрытия при нагрузке 400 кг/м 2 .

    Шаг установки,

    Длина пролета, м

    Если при устройстве межэтажного или чердачного перекрытия не планируется тепло,- звукоизоляция, а также если это перекрытие с неэксплуатируемым чердаком, то для меньших значений нагрузок можно по таблице 2 определить минимальные размеры сечения деревянных балок перекрытия.

    Таблица 2. Минимальные сечения деревянных балок перекрытия при нагрузках от 150 до 350 кг/м 2 .

    Сечение балок при длине пролета, м

    В заключение можно отметить, что шаг установки балок перекрытия для данного строения – оптимален, а сечение нужно определять по таблицам.
    Если сечение деревянных балок перекрытия недостаточно, оно – недостаточно раз перекрытие гуляет, следует установить дополнительные опоры под балки перекрытия. Это может быть выполнено в виде поперечной балки с опорой на стены или на колонны.
    Если установка на нижнем этаже дополнительной опоры под балки перекрытия – не желательна, то можно установить поперечный брус поверх балок перекрытия и скрепить его с ними, а если возможно, то и с центральным прогоном стропильной системы. Это позволит перераспределить нагрузку между балками.
    Имеется еще один вариант устранения прогиба балок – уменьшить шаг их укладки.

    Добавлено: 25.05.2012 09:14

    Обсуждение вопроса на форуме:

    У меня на даче сделали перекрытие 2-ого этажа. Уложили лаги (брус 150*150мм шаг 500мм), прибили сверху фанеру толщ.=10мм. В некоторых местах перекрытие гуляет: вверх-вниз. Подскажите, пожалуйста, правильно ли я сделал шаг бруса и как можно усилить конструкцию?

    Балки в доме относятся обычно к стропильной системе или перекрытию, и, чтобы получить надежную конструкцию, эксплуатация которой может осуществляться без каких-либо опасений, необходимо использовать калькулятор балок .

    На чем строится калькулятор балок

    Когда стены уже подведены под второй этаж или под крышу, необходимо сделать , во втором случае плавно переходящее в стропильные ноги. При этом материалы нужно подобрать так, чтобы и нагрузка на кирпичные либо бревенчатые стены не превышала допустимую, и прочность конструкции была на должном уровне. Следовательно, если вы собираетесь использовать древесину, нужно правильно подобрать балки из нее, сделать расчеты для выяснения нужной толщины и достаточной длины.

    Проседанию или частичному разрушению перекрытия могут послужить разные причины, например, слишком большой шаг между лагами, прогиб поперечин, слишком малая площадь их сечения или дефекты в структуре. Чтобы исключить возможные эксцессы, следует выяснить предполагаемую нагрузку на перекрытие, будь оно цокольное или межэтажное, после чего используем калькулятор балок, учитывая их собственную массу. Последняя может меняться в бетонных перемычках, вес которых зависит от плотности армирования, для дерева и металла при определенной геометрии масса постоянна. Исключением бывает отсыревшая древесина, которую не используют в строительных работах без предварительной сушки.

    На балочные системы в перекрытиях и стропильных конструкциях оказывают нагрузку силы, действующие на изгиб сечения, на кручение, на прогиб по длине . Для стропил также нужно предусмотреть снеговую и ветровую нагрузку, которые также создают определенные усилия, прилагаемые к балкам. Также нужно точно определить необходимый шаг между перемычками, поскольку слишком большое количество поперечин приведет к лишней массе перекрытия (или кровли), а слишком малое, как было сказано выше, ослабит конструкцию.

    Вам также может быть интересна статья о расчёте количества необрезной и обрезной доски в кубе:

    Как рассчитать нагрузку на балку перекрытия

    Расстояние между стенами называется пролетом, и в помещении их насчитывается два, причем один пролет обязательно будет меньше другого, если форма комнаты не квадратная. Перемычки межэтажного или чердачного перекрытия следует укладывать по более короткому пролету, оптимальная длина которого – от 3 до 4 метров. При большем расстоянии могут потребоваться балки нестандартных размеров, что приведет к некоторой зыбкости настила. Оптимальным выходом в этом случае будет использование металлических поперечин.

    Что касается сечения деревянного бруса, есть определенный стандарт, требующий, чтобы стороны балки соотносились как 7:5, то есть высота делится на 7 частей, и 5 из них должны составить ширину профиля. В этом случае деформация сечения исключается, если же отклониться от вышеуказанных показателей, то при ширине, превышающей высоту, получится прогиб, либо, при обратном несоответствии – загиб в сторону. Чтобы подобное не получилось из-за чрезмерной длины бруса, нужно знать, как рассчитать нагрузку на балку. В частности, допустимый прогиб вычисляется из соотношения к длине перемычки, как 1:200, то есть должен составлять 2 сантиметра на 4 метра.

    Чтобы брус не провисал под тяжестью лагов и настила, а также предметов интерьера, можно выточить его снизу на несколько сантиметров, придав форму арки, в этом случае его высота должна иметь соответствующий запас.

    Теперь обратимся к формулам. Тот же прогиб, о котором говорилось ранее, рассчитывается так: f нор = L/200, где L – длина пролета, а 200 – допустимое расстояние в сантиметрах на каждую единицу проседания бруса. Для железобетонной балки, распределенная нагрузка q на которую обычно приравнивается 400 кг/м 2 , расчет предельного изгибающего момента выполняется по формуле М max = (q · L 2)/8. При этом количество арматуры и ее вес определяется по следующей таблице:

    Площади поперечных сечений и масса арматурных стержней

    Диаметр, мм

    Площадь поперечного сечения, см 2 , при числе стержней

    Масса 1 пог.м, кг

    Диаметр, мм

    Проволочная и стержневая арматура

    Семипроволочные канаты класса К-7

    Нагрузка на любую балку из достаточно однородного материала рассчитывается по ряду формул. Для начала высчитывается момент сопротивления W ≥ М/R. Здесь М – это максимальный изгибающий момент прилагаемой нагрузки, а R – расчетное сопротивление, которое берется из справочников в зависимости от используемого материала. Поскольку чаще всего балки имеют прямоугольную форму, момент сопротивления можно рассчитать иначе: W z = b · h 2 /6, где b является шириной балки, а h – высотой.

    Что еще следует знать про нагрузки на балку

    Перекрытие, как правило, является заодно и полом следующего этажа и потолком предыдущего. А значит, нужно сделать его таким, чтобы не было риска объединить верхние и нижние помещения путем банального перегруза меблировкой. Особенно такая вероятность возникает при слишком большом шаге между балками и отказе от лагов (дощатые полы настилаются прямо на брус, уложенный в пролеты). В этом случае расстояние между поперечинами напрямую зависит от толщины досок, например, если она составляет 28 миллиметров, то длина доски не должна быть более 50 сантиметров. При наличии лагов минимальный промежуток между балками может достигать 1 метра.

    Также обязательно следует учитывать массу , используемого для пола. Например, если укладываются маты из минеральной ваты, то квадратный метр цокольного перекрытия будет весить от 90 до 120 килограммов, в зависимости от толщины термоизоляции. Опилкобетон увеличит массу такого же участка в два раза. Использование же керамзита сделает перекрытие еще тяжелее, поскольку на квадратный метр будет приходиться нагрузка в 3 раза больше, чем при укладке минеральной ваты. Далее, не следует забывать про полезную нагрузку, которая для межэтажных перекрытий составляет 150 килограммов на квадратный метр минимум. На чердаке достаточно принять допустимую нагрузку в 75 килограммов на квадрат.

    Оставьте комментарий