Расширительный бак для ГВС

Расширительный бачок почти незаменим в водоснабжении загородного дома. Он позволяет запастись дополнительным объемом воды на случай отключения, или избежать потери этой жидкости в момент ее нагревания бойлерной системой.

Содержание

Функции расширительных баков для систем водоснабжения

Давление в расширительном баке устанавливают в пределах 1-3 бар

Расширительный бачок с внутренним давлением универсален, поэтому использоваться может для нескольких целей. Первый способ применения – в системе нагрева воды бойлерами в качестве дополнительной емкости для отвода при тепловом расширении. Другой способ применения – гидроаккумулятор.

Несмотря на разные выполняемые функции, бак в обоих случаях имеет идентичную конструкцию. Состоит из стального корпуса закрытого типа с внутренним пространством, которое разделено пополам эластичной мембраной. В верхнем отсеке содержится сжатый воздух (иногда используется азот), а в нижний закачивается жидкость.

Расширительный бак как аккумулятор

Емкость подключается к системе с целью накопления дополнительной воды на тот случай, если водоснабжение прекратится. Принцип действия такой: бачок соединяется патрубком с трубами водопровода в любой точке, и при открытии крана вода начинает заполнять емкость. На соединении установлен обратный клапан, не позволяющий воде выливаться обратно.

Как только жидкость попадает внутрь, мембрана начинает двигаться вверх до тех пор, пока давление сжатого воздуха над ней не сравняется с давлением воды в системе. Стоит учитывать, что полезный объем бака составляет примерно половину от общего. В моменты отключения подачи водоснабжения, жидкость можно выкачивать из емкости через другой клапан.

Расширительный бак для бойлера

Вода имеет свойство расширяться при нагревании. Когда повышается ее температура, объем начинает возрастать. Так как емкость нагревательной системы изначально заполнена полностью, избыточная жидкость вытекает.

Чтобы избежать потерь воды, дополнительно используют расширительный бачок, устанавливаемый над бойлером. Он принимает в себя излишек. Полезное пространство внутри бака должно составлять примерно 10% от объема бойлера.

Нормальное давление

В руководстве к агрегату написано, какое давление должно быть в расширительном баке системы водоснабжения по умолчанию в данной конфигурации. Обычно оно составляет от 1 до 3 бар.

Необходимый показатель зависит еще от того, где бак находится относительно системы водоснабжения, к которой присоединен. По стандартным правилам в емкости должно быть на 0,2 атмосферы больше. Если они располагаются на одном уровне, достаточно будет этой разницы.

Если высота между расширительным бачком и системой отопления составляет 12 м, на каждые 10 метров нужно добавить дополнительную 1 атм. Получается, что для заданных условий нормальным будет давление внутри бака, которое выше водопроводного на 0,2 + 1,2 = 1,4 атмосферы.

Как измерить давление в расширительном бачке

Существует два способа узнать, под каким давлением газ находится внутри. Если к расширительному бачку с внешней стороны прикреплен манометр, его шкала покажет данные показатели. Желательно убедиться, что устройство работает правильно. Предварительно перекройте клапаны, чтобы отмежевать емкость от системы водоснабжения. Спустя 10 минут нужно сперва накачивать, а потом снова спустить воздух в баке, при этом наблюдая за поведением стрелки. Если она смещается, а движения ее плавные, то все в порядке.

Если на баке отсутствует встроенный манометр, необходимо воспользоваться портативным аналогом. Съемное устройство для измерения давления имеет такой же разъем, какой есть на выпускном клапане расширительного бачка в верхней части. Его нужно надеть и плотно закрепить. Затем открыть клапан, чтобы манометр с баком стали одной системой. Стрелки устройства покажут текущее внутреннее давление.

Регулировка показателей

Временами давление в расширительном бачке падает, поэтому его нужно периодически подкачивать, чтобы эффективность устройства оставалась на прежнем уровне. На каждой мембранной емкости есть золотник. К нему можно подключить велосипедный или автомобильный насос, либо баллон со сжатым газом.

Накачать мембранный бак водоснабжения можно вручную или с использованием автоматического насоса. Если используете баллон со сжатым воздухом, дополнительные усилия не требуются. Нужно соединить его с емкостью специальным шлангом. Затем открыть на баллоне клапан, выпускающий газ, который под давлением сам наполнит закрытый расширительный бачок.

Необходимо внимательно следить за показаниями манометра, чтобы вовремя закрутить клапан, как только внутри установится правильное давление.

  • Дополнительные рекомендации

Расширительный бак – это емкость, являющаяся частью жидкостной отопительной системы, и предназначенная для приема избыточного количества воды, которое возникает при ее нагревании и одновременном тепловом расширении. Подобные изделия, также называемые гидроаккумуляторами, применяются для балансировки автономных сетей обогрева. Проще говоря, основные задачи расширительного бака – это выравнивание количества нагретого до высоких температур теплоносителя и поддержка заданного давления. Ну а то, насколько эффективно гидроаккумулятор будет справляться с этими задачами, зависит от того, насколько правильно выбран его внутренний объем. Поскольку он может быть абсолютно разным, этот выбор зависит от определенных условий. Поэтому в данном материалы будет рассмотрен вопрос того – как рассчитать объем расширительного бака для закрытой системы отопления?

Принцип работы расширительного бака

Перед переходом к рассмотрению методики расчета объема гидроаккумулятора отопительной системы, нужно изучить принцип функционирования любого подобного устройства. Его нужно знать потому, что хотя такие емкости функционально довольно просты, их важность не стоит недооценивать. Ведь ошибка в расчетах габаритов расширительного бака может стать причиной выхода из строя всей сети обогрева и значительных затрат на ее восстановление. Стандартный гидроаккумулятор представляет собой герметичную металлическую емкость, внутреннее пространство которой на две части разделяет специальная эластичная мембрана. При этом, в верхнюю его полость закачивается воздух, создающий необходимое давление в системе. А в нижнюю полость подается горячая жидкость, которая постоянно соприкасается с мембраной.

В процессе функционирования системы отопления разогретый теплоноситель расширяется и его избыточное количество поступает в гидроаккумулятор, передвигая мембрану в направлении воздушной камеры, в которой одновременно повышается давление. А когда жидкость постепенно остывает, сжатый воздух начинает вытеснять воду из бака обратно в коммуникации сети обогрева. Именно так в ней и поддерживается необходимое давление. Соответственно, несложно догадаться, что слишком крупный расширительный бак не сможет создать необходимое давление в системе. В свою очередь, слишком маленькая емкость не сможет принять избыточное количество воды, что быстро приведет к повреждению трубопроводов и другого теплотехнического оборудования. Поэтому бак расширительный для отопления всегда устанавливается в подобной инженерной системе в обязательном порядке.

Приблизительное содержание теплоносителя в системах отопления

Определение оптимального объема расширительного бака нужно начинать с выяснения количества жидкости, которая заполняет конкретную сеть обогрева. Этот параметр равняется сумме объемов котла, всех трубопроводов и остальных отопительных приборов. Говоря о приблизительных цифрах, можно принять во внимание, что на 1 кВт мощности в разных системах приходится:

При этом, необходимо отметить, что точный расчет вместимости системы отопления довольно сложен, поэтому выполнить его качественно могут только специалисты. В ином случае владельцы частного дома смогут определить его весьма приблизительно. Для этого обычно принимается, что на 1 кВт мощности имеющегося котла приходится 15 л теплоносителя. Соответственно, если мощность теплогенератора составляет 20 кВт, приблизительное количество жидкости в системе составит: 20 кВт х 15 л = 300 л.

Критерии выбора объема расширительного бака

Содержание теплоносителя в сети обогрева – не единственный фактор, влияющий на выбор гидроаккумулятора. Оптимальный размер расширительного бачка отопительной системы зависит от трех параметров:

Таким образом, правильный объем бытового расширительного бака находится в прямой зависимости от количества и температуры теплоносителя, и в обратной зависимости – от уровня давления в сети обогрева.

Коэффициент роста объема воды и водогликолевой смеси зависимо от температуры

Как известно, все жидкости расширяются при нагревании. Поэтому данный факт нужно принимать во внимание в процессе расчета объема бака расширительного для отопления. Так, при нагревании до 95 °С вода увеличивается в объеме на 4 %. Важно, что эта цифра является достаточно точной, чтобы ее можно было без опасений использовать в расчетах. Однако, необходимо знать, что все несколько сложнее, если в качестве теплоносителя в сети обогрева используется водогликолевая смесь. В таком случае все зависит от количества этиленгликоля в ее составе, а коэффициент расширения рабочей жидкости определяется следующим образом:

Также нужно подчеркнуть, что указанные выше величины будут изменяться в зависимости от температуры, до которой нагревается теплоноситель. Так, при 80 °С коэффициент расширения воды составляет 0,029. А если 10 % ее объема заместить этиленгликолем, коэффициент составит 0,032. В свою очередь, равнопропорциональная смесь гликоля с водой (по 50 %) будет иметь коэффициент расширения 0,0436. Разобравшись с основными критериями и величинами, используемыми при расчете вместимости гидроаккумулятора, можно переходить к непосредственному подсчету его оптимального объема.

Формула расчета объема расширительного бака системы отопления

Для подбора оптимального размера гидроаккумулятора обычно применяется следующая специальная формула: V = (VL x E) / D В ней используются следующие обозначения:

При этом, последняя величина зависит от двух параметров: PV – максимального рабочего давления в системе и PS – давления зарядки мембранного бака. Для упрощения расчетов, в случае с частными домами принято считать достаточным PV = 2,5 бар. В свою очередь, PS должно равняться статическому давлению в сети обогрева и принимается 0,5 бар = 5 м.

Пример расчета объема расширительного гидроаккумулятора

Для наглядности рассмотрим пример с частным домом площадью 200 м2, работу автономной системы отопления которого обеспечивает котел мощностью 20 кВт. Частью его сети обогрева высотой 5 м также является теплоаккумулятор объемом 700 л. Расчет начинается с выяснения общего объема теплоносителя:

VL = (20 х 15) + 700 = 1000 л

где 20 кВт – мощность котла; 15 л – удельный объем теплоносителя на 1 кВт мощности котла, а 700 л – объем аккумулирующей емкости.

Теперь можно переходить к расчету эффективности мембранного бака по формуле: D = (PV – PS) / (PV + 1)

Для данного примера принято, что PV = 2,5 бар и PS = 0,5 бар. Соответственно:

D = (2,5 – 0,5) / (2,5 + 1) = 0,57

После этого можно определять непосредственный объем расширительного бака:

V = 1000 х 0,04 / 0,57 = 70,18 л где 0,04 – коэффициент расширения теплоносителя, в качестве которого в этом примере выступает обычная вода.

Поскольку в каталогах всех производителей присутствуют гидроаккумуляторы стандартных типоразмеров, крайне редко выпадает возможность купить расширительный бак с таким объемом, который будет полностью соответствовать расчетному. Поэтому, результат подсчетов нужно округлять в большую сторону и приобретать емкость следующего более крупного размера. В данном случае подходит стандартная вместимость бака 80 л.

Дополнительные рекомендации

В отличие от устаревших открытых гидроаккумуляторов, которые уже почти не используются, современные расширительные баки закрытого типа можно монтировать в любых частях систем отопления, а не только в их самых высоких точках. В этом заключается значительное преимущество таких мембранных компенсаторов давления. При этом, небольшие бачки объемом 20 — 25 л устанавливают, зачастую, вместе с циркуляционным насосом, мощностью, приблизительно, 1,2 кВт. А более крупные емкости, вмещающие 20 — 60 л, объединяют с нагнетателями жидкости мощностью до 2,0 кВт. Обязательное использование циркуляционных насосов в современных системах отопления обусловлено тем, что создаваемая ими принудительная циркуляция позволяет сделать такую сеть значительно более эффективной, по сравнению с сетями с естественной циркуляцией.

Кроме того, на рынке присутствуют и компенсирующие устройства больших объемов на 100 — 200 л. Такие изделия, кроме своего прямого назначения, способны выполнять функцию накопительных резервуаров для нагретой воды. Хотя, использовать их в таком качестве можно только в случае отключения основного источника горячего водоснабжения на относительно короткий срок. Как было упомянуто выше, стандартные типоразмеры тепловых расширительных емкостей могут быть абсолютно разными. Поэтому среди них встречаются даже модели с настолько большими габаритами, которые не проходят в обычные дверные проемы. В этом случае одну огромную емкость стоит заменить на несколько менее крупных. Самое главное, чтобы их суммарный объем равнялся расчетному. Тогда система отопления будет находиться в безопасности от перепадов давления расширяющегося теплоносителя.

  • При использовании радиаторов – 10,5 л теплоносителя;
  • При использовании конвекторов – 7 л теплоносителя;
  • При использовании теплых полов – 17 л теплоносителя.
  • Объема жидкости в системе – чем он больше, тем крупнее должны быть габариты гидроаккумулятора;
  • Температуры жидкости – чем сильнее она нагревается, тем вместительней должна быть расширительная емкость;
  • Давления в системе – чем выше его максимально допустимый уровень, тем меньше должен быть объем бака.
  • VL – общая емкость отопительной системы, включающая объем котла, всех тепловых аккумуляторов (конвекторов, радиаторов и не только), а также вместимость трубопроводов;
  • Е – коэффициент расширения используемой рабочей жидкости (теплоносителя);
  • D – эффективность расширительного бака (мембранного типа).

Keywords: membrane expansion tank, expansion tank, flanged tank, diaphragm tank

Описание:

Мембранные расширительные баки (экспанзоматы) предназначены для компенсации изменения объема теплоносителя в системе отопления при его нагревании–охлаждении, а также для поддержания постоянного давления в системе горячего и холодного водоснабжения.

Ключевые слова: мембранный расширительный бак, экспанзомат, фланцевый бак, диафрагменный бак

А. Н. Орехов, технический специалист

Мембранные расширительные баки (экспанзоматы) предназначены для компенсации изменения объема теплоносителя в системе отопления при его нагревании–охлаждении, а также для поддержания постоянного давления в системе горячего и холодного водоснабжения.

Конструкция расширительных баков

Экспанзомат представляет собой шарообразную или цилиндрическую стальную емкость, разделенную на две части эластичной мембраной: в одной части находится воздух или газ под давлением, другая – заполняется жидкостью.

Корпус бака, как правило, изготавливается из легированной коррозионно-стойкой листовой стали с лакокрасочным покрытием с наружной стороны. Реже встречаются экспанзоматы с корпусом из нержавеющей стали. Данные баки не получили широкого распростра-нения ввиду высокой стоимости.

Принцип работы расширительного бака состоит в том, что при повышении температуры жидкости (повышении давления) избыток объема жидкости направляется в бак, растягивая мембрану и повышая давление в воздушной полости. При остывании жидкости (снижении давления) мембрана сокращается, выталкивая жидкость в систему. Это позволяет избегать возникновения избыточного давления при разогреве теплоносителя в системе отопления, а также гасить гидроудары в системе холодного и горячего водоснабжения, для которых характерны частые скачки давления при открытии/закрытии водоразборных кранов (включении/отключении насоса).

Основные технические характеристики баков:

  • объем, л;
  • орабочая температура, °C;
  • определьная температура, °C/мин;
  • орабочее давление, МПа;
  • околичество циклов расширения–сокращения мембраны;
  • огарантийный срок от сквозной коррозии корпуса бака;
  • определьная концентрация этиленгликоля в теплоносителе, %.

Расширительные баки подразделяются:

  • по конструкции:
    а) фланцевые, со сменной мембраной,
    б) диафрагменные, со стационарной мембраной (рис. 1).

Рисунок 1.

Диафрагменный расширительный бак со стационарной мембраной

В последнее время наибольшее распространение получили фланцевые баки со сменной мембраной как более универсальные и простые в эксплуатации, так как их конструкция позволяет заменить поврежденную мембрану, сохранив корпус бака, что немаловажно для баков большого объема.

Диафрагменные баки в основном применяются в системах небольшого объема ввиду дешевизны и меньших габаритов;

  • по способу установки:
    а) вертикального исполнения для настенного монтажа с рабочим патрубком, расположенным сверху. Данное исполнение характерно для баков небольшого объема (5–50 л),
    б) вертикального исполнения для напольного монтажа с рабочим патрубком, расположенным снизу. Данное исполнение характерно для баков большого объема (50 л и более),
    в) горизонтального исполнения для баков большого объема, устанавливаемых в помещениях с ограниченной высотой;
  • по назначению:
    а) для закрытых систем отопления,
    б) для систем горячего водоснабжения,
    в) для систем холодного водоснабжения (гидроаккумуляторы),
    г) для систем холодоснабжения.

В закрытых системах отопления могут применяться как диафрагменные, так и фланцевые баки с мембраной из бутилкаучука. Данный материал обладает улучшенными характеристиками по сопротивлению высокой температуре и давлению: температура – до 120 °C, давление – до 16 МПа.

В системах горячего водоснабжения применяются баки фланцевого типа с мембраной, выполненной из пищевой резины, предотвращающей контакт питьевой воды с металлом и изменение ее качественных характеристик.

В гидроаккумуляторах для холодного водоснабжения применяются фланцевые баки с мембраной из пищевой резины с улучшенными характеристиками эластичности для более полного гашения гидравлических ударов и поддержания стабильного давления в системе водоснабжения.

Мембранные баки в нормативных документах

Согласно СП 30.13330.2012 «Внутренний водопровод и канализация зданий. Актуализированная редакция СНиП 2.04.01–85*» водонапорные и гидропневматические баки питьевой воды, а также баки-аккумуляторы надлежит изготовлять из металла с наружной и внутренней антикоррозионной защитой. При этом для внутренней антикоррозионной защиты следует применять материалы, прошедшие санитарно-эпидемиологическую экспертизу и имеющие соответствующее разрешение. Для баков-аккумуляторов систем горячего водоснабжения тепловую изоляцию следует предусматривать по расчету.

Гидропневматические баки должны быть оборудованы подающей, отводящей и спускной трубами, а также предохранительными клапанами, манометром, датчиками уровня и устройствами для пополнения и регулирования запаса воздуха.

Рисунок 2.

Бак для закрытых систем отопления

Гидропневматические баки надлежит устанавливать в помещениях, где расстояние от верха баков до перекрытия и между баками и до стен не менее 0,6 м.

Согласно СП 41-101–95 «Проектирование тепловых пунктов» расширительные баки должны быть цилиндрической формы; для баков с внутренним диаметром корпуса до 500 мм должны приниматься плоские приварные или эллиптические днища, а при диаметре более 500 мм – эллиптические. Расширительные баки должны быть оборудованы предохранительными клапанами.

Предохранительные устройства должны быть рассчитаны и отрегулированы так, чтобы давление в защищенном элементе не превышало расчетное более чем на 10 %, а при расчетном давлении до 0,5 МПа не более чем на 0,05 МПа. Расчет пропускной способности предохранительных устройств должен производиться согласно ГОСТ 24570.

В своде правил СП 31-106–2002 «Проектирование и строительство инженерных систем одноквартирных жилых домов» для компенсации температурных расширений теплоносителя в независимых системах отопления следует предусматривать расширительные баки.

В системе водяного отопления с искусственным побуждением циркуляции теплоносителя могут использоваться открытые или закрытые расширительные баки, располагаемые в помещении теплогенератора. Рекомендуется применять расширительные баки диафрагменного типа с тепловой изоляцией.

Требуемая вместимость бака устанавливается в зависимости от объема теплоносителя в системе отопления.

В СП 41-104–2000 «Проектирование автономных источников теплоснабжения» указано, что для приема излишков воды в системе при ее нагревании и для подпитки системы отопления при наличии утечек в автономных котельных рекомендуется предусматривать расширительные баки диафрагменного типа для системы отопления и вентиляции и для системы котла (первичного контура).

Следует учитывать, что в системе теплоснабжения не допускается применять металлополимерные трубы для расширительного, предохранительного, переливного, сигнального трубопроводов согласно СП 41-102–98 «Проектирование и монтаж трубопроводов систем отопления с использованием металлополимерных труб».

Подбор расширительных баков для систем отопления

Для подбора бака необходимо знать следующие параметры системы:

  • объем системы – Q, л;
  • гидростатическое давление системы – Pст, кПа;
  • давление срабатывания предохранительного клапана – Pпр, кПа;
  • коэффициент теплового расширения теплоносителя – b.

Расчет производится по формуле:

Vрб = Q•b/ (1 – Pст/Pп).

Расчет бака для системы ГВС производится аналогично.

Подбор гидроаккумулятора для системы ХВС

Для подбора бака необходимо знать следующие параметры системы:

  • средний расход насоса – Q, м3/ч;
  • рекомендуемую частоту включения насоса – n, 1/ч.

Расчет производится формуле:

Vба = Q/4n (м3).

Особенности монтажа расширительных баков

Баки для закрытых систем отопления. Баки, как правило, следует устанавливать на обратной магистрали отопления, на всасывающей линии циркуляционного насоса.

Бак, в обязательном порядке, оборудуется (рис. 2):

  • запорным краном с пломбировочным устройством, предотвращающим случайное перекрытие;
  • группой безопасности, состоящей из манометра, воздухоотводчика и предохранительного клапана.

В случае, если температура в обратной магистрали отопления может превышать 70 °C, необходимо предусмотреть установку промежуточной емкости для предварительного охлаждения теплоносителя.

Также важно помнить, что диаметр подводящего трубопровода должен быть не менее диаметра присоединительного патрубка расширительного бака.

Если в системе отопления применяется теплоноситель на основе раствора этилен- или пропиленгликоля, то потребуется расширительный бак увеличенного объема из-за большего коэффициента расширения таких растворов.

Рисунок 3.

Установка расширительного бака в системе горячего водоснабжения: 1 – расширительный бак; 2 – предохранительный клапан; 3 – насос; 4 – фильтр; 5 – обратный клапан; 6 – запорный кран

Баки для систем горячего водоснабжения. Такие баки, как правило, следует устанавливать на циркуляционной магистрали, на всасывающей линии циркуляционного насоса в непосредственной близости от источника тепла (бойлер, теплообменник). Бак в обязательном порядке оборудуется (рис. 3):

  • запорным краном с пломбировочным устройством, предотвращающим случайное перекрытие;
  • группой безопасности, состоящей из манометра, воздухоотводчика и предохранительного клапана.

Баки для систем холодного водоснабжения. Данные баки, как правило, следует устанавливать в нижней точке системы холодного водоснабжения. Бак в обязательном порядке оборудуется (рис. 4):

  • запорным краном с пломбировочным устройством, предотвращающим случайное перекрытие;
  • группой безопасности, состоящей из манометра, воздухоотводчика и предохранительного клапана;
  • обратным клапаном.

При регулировке давления в газовой полости следует учитывать, что для предотвращения коррозии внутренней поверхности корпуса бака, на заводе газовая полость заполняется инертным газом, как правило, осушенным азотом. Соответственно, при необходимости повышения давления в газовой полости или при заполнении газовой полости после замены мембраны рекомендуется использовать технический азот. Это позволит избежать окисления неокрашенной стенки бака с влагой атмосферного воздуха и кислородом.

Рисунок 4.

Вариант установки расширительного бака: 1 – манометр; 2 – обратный клапан; 3 – шахта, колодец с водой; 4 – регулирующий вентиль; 5 – шкаф управления; 6 – мембранный расширительный бак для водоснабжения; 7 – манометр; 8 – предохранительный клапан; 9 – подача воды к оборудованию; 10 – вертикальный многоступенчатый насос

Наиболее распространенные неисправности баков

  1. Разрыв мембраны. Основными признаками являются: срабатывание предохранительного клапана из-за превышения допустимого давления при расширении теплоносителя; появление резких скачков давления в системе горячего и холодного водоснабжения, частые включения–отключения скважинного насоса в системе холодного водоснабжения; поступление воды из золотника воздушного ниппеля. Следует заменить мембрану, если бак фланцевого типа или бак целиком, если он диафрагменный.
  2. Отсутствие наполнения бака водой. Следует проверить давление в воздушной камере. Оно не должно превышать значений, указанных в паспорте бака для расчетного давления в системе.
  3. Течь в корпусе бака. Необходима замена бака.

Сервисное обслуживание расширительных баков

Как правило, обслуживание расширительных баков заключается в следующем:

  1. Проверка давления в воздушной части мембраны.
  2. Проверка контрольно-измерительных приборов группы безопасности (манометра, предохранительного клапана, воздухоотводчика).
  3. Проверка запорной арматуры.
  4. Внешний осмотр корпуса бака на предмет коррозии.

Б.А. Зимин, инженер, г. Москва

Введение

В теплоэнергетике остается актуальной проблема деаэрации подпиточной воды тепловых сетей. Многие города в России имеют открытую систему теплоснабжения. Подпитка теплосети на некоторых ТЭЦ достигает 2-4 тыс. т воды в час. Для деаэрации воды используется морально устаревшая техника, созданная в первой половине или в середине 20-го века. Это атмосферные деаэраторы ДА и ДСА и вакуумные деаэраторы типа ДСВ — струйные и струйно-барботажные деаэраторы, работающие на экстенсивных принципах тепло- и массообмена между деаэрируемой водой и деаэрирующим агентом — паром. В вакуумных деаэраторах типа ДСВ-800 и ДСВ-400 в качестве деаэрирующего агента применяется вода, перегретая выше температуры кипения при расчетном вакууме. При снижении давления перегретая вода вскипает, образуя пар, который барботируется через слой деаэрируемой воды и контактирует в противотоке со струями деаэрируемой воды, диспергируемыми при прохождении дырчатых тарелок.

Недостатки работы типовых вакуумных деаэраторов ДСВ:

■ резкое снижение качества деаэрации при нагрузках деаэратора выше 50% (по общему потоку воды);

■ снижение качества деаэрированной воды при переменных нагрузках;

■ перерасход электроэнергии на перекачку греющей воды из теплосети и обратно в сеть через деаэраторы при снижении давления воды до атмосферного;

■ потери пара на обеспечение вакуума паровыми эжекторами;

■ высокие затраты труда на обслуживание и ремонт большого количества деаэраторов, работающих при малых нагрузках.

Реконструкция деаэраторов

Решение проблемы деаэрации подпиточной воды на ТЭЦ с открытыми системами теплоснабжения рассмотрим на примере ТЭЦ-5 г. Омска.

На ТЭЦ-5 установлено 8 вакуумных деаэраторов типа ДСВ (ДСВ-800 — 7 шт. и ДСВ-400 — 1 шт.). Потери воды в теплосети составляют 1600 т/ч, которые должны восполняться деаэрируемой водой. В деаэраторы поступает 1600 т/ч деаэрируемой воды с температурой 20 ОС и 1400 т/ч греющей воды с температурой 100 ОС из теплосети. Суммарная производительность деаэраторов и общая подпитка теплосети составляет 3000 т/ч (53% деаэрируемой воды и 47% греющей). Температура деаэрированной воды — 57-62 ОС. Процесс деаэрации происходит при глубоком вакууме.

Специалистами ЗАО «Регион-Бизнес» (г. Москва) разработан проект реконструкции системы деаэрации подпиточной воды теплосети для ТЭЦ-5 (рис. 1), который включает в себя реконструкцию двух вакуумных деаэраторов ДСВ-800 с использованием изобретений автора: центробежно-вихревых деаэраторов (первая ступень деаэрации), капельных деаэраторов (вторая ступень деаэрации), системы обеспечения вакуума, контактных охладителей выпара (данные разработки подробно представлены в НТ № 1, 2001 г и № 1, 2006 г — прим. ред.).

Для осуществления этого проекта:

■ из деаэрационного бака деаэратора ДСВ-800 удаляют все устройства;

■ изготавливают и устанавливают над баком центробежновихревой деаэратор ДЦВ-800;

■ в верхней части бака устанавливают диспергаторы воды, поступающей в бак из ДЦВ-800;

■ на выпарном трубопроводе устанавливают подогреватель низкого давления в качестве охладителя выпара;

■ перед деаэратором устанавливают подогреватель деаэрированной воды, способный нагреть воду до 85 ОС.

Деаэрационная установка работает без подачи в деаэратор пара или греющей воды, т.е. на, так называемом, «начальном эффекте». Вода вскипает, образуя выпар, с которым удаляются агрессивные газы. Схема реконструкции предусматривает также использование конденсата выпара в качестве обессоленной воды для паровых колов. Охлаждение воды в деаэраторе на 10 ОС за счет образования выпара обеспечивает 16 кг конденсата на каждую тонну деаэрированной воды.

В результате реконструкции достигается следующее:

■ вместо восьми деаэраторов в работе остаются только два. Подпитка теплосети через деаэраторы сокращается с 3000 до 1600 т/ч (за счет ликвидации рециркуляции сетевой воды из теплосети в деаэраторы). Происходит перераспределение потоков греющего пара без увеличения количества отбираемого от турбин пара;

■ повышается температура нагреваемой в деаэраторе воды до 85 ОС, вместо 50-65 ОС, что приведет к уничтожению бактерий, находящихся в подпиточной воде;

■ обеспечивается высокое качество деаэрированной воды;

■ деаэратор может работать, как агрегат двойного назначения (деаэрация воды и выработка конденсата, один деаэратор выработает 12800 кг/ч конденсата, два — 25600 т/ч. При повышении температуры деаэрируемой воды можно увеличить количество получаемого конденсата).

Другим примером эффективного решения проблемы деаэрации является реконструкция деаэрационной установки в Кировской районной котельной г. Омска в 2008 г. Неработающий сетевой атмосферный деаэратор ДСА-300 был реконструирован в вакуумный производительностью 600 т/ч по указанной ниже схеме (рис. 2).

Деаэрируемая вода нагревается до 85 ОС в паровом подогревателе 6, подается в ДЦВ-600 (первую ступень деаэрационной установки), где удаляется 98% агрессивных газов. Далее, частично деаэрированная вода, подается в капельный деаэратор 2, где удаляются остатки агрессивных газов (до значений ниже установленных норм). Деаэрация воды происходит за счет мгновенного испарения воды, перегретой выше температуры кипения, соответствующей вакууму в деаэраторе. Выпар поступает в контактный охладитель выпара (ОВК) 3, где конденсируется потоком деаэрируемой воды, поступающей из системы холодного водоснабжения. Из того же водопровода вода подается в водоструйный эжектор 5 (ЭВ-100 с расходом рабочей воды 100 т/ч). Вода из ОВК и из ЭВ-100 поступает в бак 8 (бак-га- зоотделитель), после которого насосом 7 подается в ДЦВ-600 через паровой подогреватель 6. Деаэрированная вода подается насосом 9 в аккумуляторные баки или непосредственно в обратный трубопровод теплосети.

После завершения реконструкции неудовлетворительно работавшие атмосферные форсуночные деаэраторы были отключены.

Ранее (в 2002 г.) аналогичная реконструкция сетевого атмосферного деаэратора в вакуумный с установкой ОВК, с увеличением производительности до 600 т/ч произведена на Черепетской ГРЭС (г. Суворов, Тульская область).

Решение проблемы кавитации насосов

Ранее проблема кавитации насосов, откачивающих деаэрированную воду из вакуумного деаэратора, решалась за счет установки деаэратора на отметке, превышающей отметку установки насоса на 14-17 м. Но в случае с деаэратором в Кировской котельной г Омска отметка установки деаэратора составила 5 м. Средний уровень воды в деаэраторном баке соответствует отметке 7 м. Всасывающий патрубок подпиточного насоса находился под вакуумом, что могло привести к кавитации и к прекращению подачи воды. Решение было найдено за счет рециркуляции 10% воды от нагнетательного патрубка насоса к рабочему колесу насоса. Трубопровод рециркуляции воды с соплом на конце был подведен к рабочему колесу насоса (рис. 3). Сопло разбивает воздушный или паровой пузырь перед рабочим колесом, что предотвращает завоздушивание или запаривание насоса (кавитацию). Такое решение позволяет работать откачивающему насосу при глубоком вакууме в баке-аккумуляторе деаэрационной установки, не поднимая бак на значительную высоту.

Ограничение области применения вакуумных деаэраторов

Согласно Постановлению Главного государственного санитарного врача РФ от 7 апреля 2009 г № 20 «Об утверждении СанПиН 2.1.4.2496-09» при открытой системе теплоснабжения деаэрация должна проводиться при температуре более 100 ОС. Данное постановление трактуется как запрет на проектирование и эксплуатацию вакуумных деаэраторов при открытой системе теплоснабжения, что наносит экономике страны огромный экономический ущерб. Большинство ТЭЦ имеют вакуумную систему деаэрации. Они должны или реконструировать систему водоподготовки, или отказаться от деаэрации подпиточной воды, что приведет к коррозионному разрушению трубопроводов тепловых сетей и значительным затратам на их ремонт

Что могло послужить причиной выхода в свет такого постановления, и были ли на то причины?

Причины были. Например, в жилых домах возле котельной пос. Африканда Мурманской области (недалеко от АЭС в г. Полярные Зори) в 1999 г. при включении крана горячей воды можно было наблюдать, что из него вытекала жидкость, напоминающая в первые минуты деготь, затем воду серого цвета и только через несколько минут светлую воду.

В котельной с водогрейными котлами эксплуатировался вакуумный деаэратор ДСВ-100, осуществляющий нагрев деаэрируемой воды за счет смешения ее с греющей сетевой водой. Деаэрированная вода с температурой не более 60 ОС поступала в аккумуляторный бак, из которого подавалась потребителям. Насосы рециркуляции воды водогрейных котлов были демонтированы, что не позволяло держать температуру греющей воды за котлами выше, чем предусматривал график отпуска тепла 95/70 ОС (рециркуляционный насос позволяет, не нарушая температурного графика отпуска тепла, иметь большую температуру воды за котлом для работы деаэратора).

Из-за недостаточно высокой температуры деаэрированной воды в аккумуляторном баке развивались микроорганизмы, которые за несколько лет эксплуатации образовали на стенках бака колонии в виде черной грязи толщиной в несколько сантиметров. Эта грязь и попадала в систему ГВС.

Но даже в таких котельных можно эффективно решить все вопросы — восстановить рециркуляционные насосы и обеспечить достаточный нагрев воды для работы деаэраторов. Если бы вакуумные деаэраторы работали при температуре 80 ОС, то не образовался бы такой слой колоний микроорганизмов. Можно было бы обязать периодически дезинфицировать аккумуляторные баки горячей водой с температурой 100 ОС.

Другим примером (трагическим, но не показательным) является нарушение санитарно-эпидемиологических норм при подаче воды в систему ГВС в г. Верхняя Пышма летом 2007 г. в результате чего легионелезом было инфицировано 73 человека, пятеро скончались. Причиной стало нарушение технических регламентов и подача горячей воды с температурой ниже нормативной в трубопровод, который до этого был отключен от системы ГВС на срок 10 дней (деаэраторы в этом случае были не причем).

В большинстве же случаев причиной попадания микроорганизмов в систему горячего теплоснабжения являются не вакуумные деаэраторы, а аккумуляторные баки, эксплуатируемые без надзора. Микроорганизмы попадают в аккумуляторный бак с атмосферным воздухом, который заполняет его при периодическом опорожнении бака. Микроорганизмы осаждаются на стенках и размножаются, находясь над уровнем воды, когда и температура невысокая, и достаточно кислорода и влаги.

Следует заметить, что в атмосферных деаэраторах, несмотря на то, что они работают при температуре 104 ОС, деаэрируемую воду перед подачей в аккумуляторные баки охлаждают до 70-80 ОС, и микроорганизмы все равно могут развиваться в аккумуляторных баках, если их периодически не дезинфицировать.

Действительно ли при 80 ОС микроорганизмы не прекращают свое развитие и продолжают образовывать колонии? Если бы в Постановлении было указано 80 ОС вместо «более 100 ОС», это могло спасти прогрессивное направление деаэрации — вакуумную деаэрацию (но только при условии развития новых способов вакуумной деаэрации вместо устаревшей).

Для решения возникшей проблемы применения вакуумных деаэраторов предлагается следующее:

■ разрешить работу вакуумных деаэраторов для деаэрации воды в системах с открытым водоразбором с температурой нагрева деаэрируемой воды до 80-85 ОС;

■ обеспечить контроль наличия бактерий в системе теплоснабжения и периодическую дезинфекцию аккумуляторных баков;

■ восстановить (или установить) на водогрейных котлах рециркуляционные насосы, позволяющие повысить потенциал греющей воды для собственных нужд без нарушения температурного графика теплопотребления;

■ при отсутствии аккумуляторных баков деаэрированной воды не ограничивать степень нагрева воды перед вакуумными деаэраторами значением 80 ОС (можно снизить до 70 ОС, т.к. в нагретой до этой температуры проточной воде меньше микроорганизмов, чем в холодной водопроводной);

■ при решении вопроса понижения температуры воды в деаэраторах со 101 до 80 ОС учитывать, что часть теплосетей работают по температурному графику 150/70 ОС, т.е. независимо от температуры подпиточной воды, температура воды в теплосети в зимний и осенне-весенний период превышает 100 ОС.

Оставьте комментарий