Стабилизатор напряжения электромеханический или релейный?

Ресанта АСН 10000/1-Ц – однофазный релейный стабилизатор напряжения (электронный), подробная информация досупна по ссылке

Ресанта АСН 10000/1-ЭМ – однофазный электромеханический стабилизатор напряжения, подробная информация досупна по ссылке

Ниже вы можете видеть сводную таблицу со всеми основными характеристиками этих стабилизаторов напряжения.

В ней, как вы можете видеть, довольно много совпадений, но есть и существенные различия, давайте рассмотрим их, сразу же по каждому пункту выявим лидера, а в конце статьи подведем общий итог и узнаем какого типа стабилизатор напряжения всё же лучше.

Начнем с последнего по положению, но не по значению при выборе и покупке пункту – цена.

Содержание

Стоимость релейного и электромеханического стабилизатора

Чаще всего, независимо от производителя, разница в цене на релейные и электромеханические стабилизаторы напряжения составляет около 30%, на столько, в среднем, электронные модели дешевле.

И здесь нечему удивляться, большая часть этой разницы составляет регулируемый автотрансформатор в механическом стабилизаторе, в электронной модели его нет, используются гораздо более дешевые – обычный автотрансформатор и силовые реле.

По этому пункту безоговорочно побеждает релейный стабилизатор, его цена ниже электромеханического на 30%.

Масса

Вес стабилизатора напряжения не самый критичный показатель при выборе, но он, в некоторых ситуациях, всё же играет свою роль, мобильность электромеханической модели гораздо ниже, т.к. его масса на 23% больше релейного, переносить сложнее.

Габаритные размеры

Габаритные размеры стабилизаторов этих видов вполне сопоставимы, здесь с небольшим преимуществом (разница всего 5-10%) побеждает релейный стабилизатор, его габариты чуть меньше, чем у механического.

Точность поддержания напряжения и номинальная величина выходного напряжения

Две этих важных характеристики, на деле показывают одно и то же, точность стабилизации, поэтому они объединены в один общий пункт. Как вы понимаете, эта характеристика очень важная и показывает насколько точно стабилизатор корректирует входящее напряжение.

Так, например, механический стабилизатор имея точность 2%, в нормальном режиме работы, будет выдавать напряжение в диапазоне от 216 до 224 Вольт, а это очень хороший показатель, даже самые чувствительные приборы не заметят такие изменения напряжения, для большинства из них это заложенные производителем нормальные режимы работы.

При этом релейный стабилизатор со своими 8% точности, будет давать выходное напряжение уже в диапазонах от 202 до 238 Вольт, а вот это уже существенная разница, не каждый прибор будет работать в штатном режиме при таком напряжении.

Таким образом, по точности стабилизации механический стабилизатор безоговорочно выигрывает у релейного.

Время регулирования

Время регулирования напряжения, она же скорость стабилизации, еще один наиважнейший показатель и здесь ситуация складывается совсем другая.

Так релейный стабилизатор, реагирует на изменения входящего напряжения со скоростью 10 миллисекунд, при этом ему не важно на сколько оно упало или выросло (в пределах своего рабочего диапазона 140-260В), он за эти доли секунды сменит режим и будет выдавать напряжение 200+/- 8%.

В это же время электромеханический стабилизатор имеет скорость стабилизации всего 10 Вольт в секунду. Таким образом, если падение напряжения составит 30 Вольт (входящее напряжение будет 190В), сервоприводной модели потребуется порядка 3 секунд чтобы на выходе было 200+/- 2%. Все эти 3 секунды, приборы подключенные к стабилизатору будут работать при пониженном напряжении.

По времени регулирования релейный стабилизатор значительно превосходит электромеханический.

ИТОГИ СРАВНЕНИЯ ХАРАКТЕРИСТИК релейного и электромеханического стабилизаторов

Как вы видите, если сравнивать основные характеристики, то получается, что релейный стабилизатор напряжения лучше электромеханического. Он в среднем на треть дешевле, а главное значительно быстрее реагирует на изменения напряжения в сети.

Казалось бы, зачем тогда вообще выпускать сервоприводные стабилизаторы, если значительно более доступные релейные модели по многим характеристикам их обгоняют?

Ответ прост, несмотря на все свои недостатки, в частности очень медленную скорость стабилизации напряжения, механические стабилизаторы имеют недостижимый для обычных релейных моделей показатель точности стабилизации.

Таким образом, сравнивать напрямую, какой стабилизатор лучше релейный или электромеханический некорректно, каждый из них предназначен для выполнения определенных задач, с которыми не справится соперник.

Зная эту информацию, давайте теперь рассмотрим, в каких случаях лучше всего купить релейный трансформатор, а в каких электромеханический.

В каких случаях лучше купить релейный стабилизатор напряжения

Релейный (сервоприводный) стабилизатор наиболее универсальное устройство и именно его покупают чаще всего на дачу или в квартиру. И даже достаточно низкая точность стабилизации, в стандартных бытовых условиях применения, не такая уж критичная характеристика, ведь ГОСТ 32144-2013, который регламентирует качество электроэнергии в наших квартирах и домах, допускает отклонения по напряжению до 10%.

Получается, что у вас вполне официально напряжение в розетке может быть на 10% ниже номинального, например, 198В, при этом погрешность стабилизации релейных моделей на уровне 8% уже не кажутся такой страшной цифрой. Особенно если учесть, что производители электрооборудования придерживаются того же госта при разработки своих устройств и практически любое из них безболезненно выдерживает напряжения на 10% большее или меньшее чем номинальное.

Более подробно о достоинствах электронных моделей и особенностях их работы читайте в нашей статье – «Что такое релейный стабилизатор напряжения»

В каких случаях лучше купить электромеханический стабилизатор напряжения

Главными преимуществами электромеханического стабилизатора являются его точность стабилизации и отсутствие скачков и искажений при переключении режимов.

Его можно рекомендовать к покупке тогда, когда к нему подключается чувствительное электронное оборудование – персональный компьютер, телевизор, лабораторные или измерительные приборы и многое другое в сетях, в которых не бывает резких скачков и падений напряжения. Так, например, это идеальный вариант если вы живете в городской квартире или даже деревне и из-за старости или недостаточной оптимизации ваши электрические сети выдают заниженное или завышенное напряжение , особенно если у вас нет соседа с мощнейшим сварочным аппаратом, работая которым он даёт просадку на всей линии.

Пусть механический стабилизатор несколько дороже, но позволит вашему оборудованию работать практически в идеальных условиях.

Тяжело посчитать возможную прямую выгоду от решения приобретения механического стабилизатора, но вы должны понимать, что даже один спасённый электроприбор или то что просто исправно проработает весь срок службы и даже больше, уже окупит с лихвой ту разницу в стоимости между релейной и электромеханической моделями.

Более подробно о достоинствах сервоприводных моделей и особенностях их работы читайте в нашей статье – «Что такое электромеханический стабилизатор напряжения»

Выбираем стабилизатор напряжения по типу

Тип стабилизатора – важный параметр, на который стоит обратить внимание при выборе. Свои плюсы и минусы имеет каждый из них.

Какой стабилизатор лучше: электромеханический или электронный

К электронным устройствам можно отнести и релейные и тиристорные модели.

Стабилизаторы релейного типа отличает относительно высокая скорость срабатывания ступеней стабилизации, но самое главное — это возможность вытягивания напряжения при самых низких просадках, порой, с менее 100 вольт! Правда, при таком подходе погрешность стабилизации весьма существенная, но, всё таки, редко выходящая за пределы, установленные ГОСТ. Регулировка осуществляется ступенчато посредством электромагнитных реле, включающих ту или иную обмотку автотрансформатора. Плюсами таких приборов можно считать:

  1. большой диапазон входного напряжения;
  2. надёжность работы;
  3. защита от перепадов, перегрузок сети, короткого замыкания, импульсных помех.

Регулировка напряжения в тиристорных стабилизаторах тоже ступенчатая, осуществляется с помощью тиристорных (симисторы или тиристоры — полупроводниковые силовые радиокомпоненты) ключей. В некоторых моделях реализована двухкаскадная система, обеспечивающая высокую точность. Процессор выполняет расчеты при каждой полуфазе, скорость замеров составляет менее 1 микросекунды. Электронные стабилизаторы тиристорного типа отличает:

  1. высокая скорость (сравнима с релейными моделями);
  2. полностью бесшумная работа;
  3. высокий уровень стабилизации и низкая погрешность;

Существенным плюсом тиристорных моделей является отсутствие открытой коммутации, а значит никогда не будет искрения и подгорания контактов. Именно из-за их надёжности производитель даёт дополнительную гарантию на свою продукцию.

Стабилизация в электромеханических стабилизаторах осуществляется с помощью сервопривода, приводящего в движение контакты (ролики или щетки). Перемещение контакта в нужное положение на обмотке электродвигателя обеспечивает очень плавную регулировку без прерывания фазы и без искажения синусоиды с высокой точностью выходного напряжения. Если выбирать электромеханический стабилизатор по типу механизма (роликовый или щёточный узел), то ролики, однозначно, надёжнее, но и цена таких стабилизаторов существенно выше. Щётки могут пригорать при больших нагрузках и при резких и частых перепадах напряжения.

Вывод

Итак, релейные стабилизаторы напряжения стоит выбирать при существенных просадках напряжения в сети, но при условии нечастых перепадов в течение минуты. Кроме того, они не всегда подходят для жилых и, особенно, спальных комнат, так как щелчки при перепадах напряжения могут надоедать.

Для жилых и спальных комнат отлично подходят тиристорные стабилизаторы и электромеханические (роликовые в особенности).

На этот вопрос ответить однозначно, просто невозможно. У каждого типа стабилизатора есть свои плюсы и минусы, кроме того многое зависит от области применения. Более того конкретная модель в определённых условиях будет работать некорректно и не даст желаемого результата.

Помочь сделать правильный выбор помогут технические характеристики различных типов стабилизаторов, а так же рекомендуемая сфера применения.

Релейный стабилизатор

Этот стабилизатор относится к трансформаторному типу. Основным элементом устройства является тороидальный трансформатор, который иногда называется катушкой вольтодобавки. Этот узел представляет собой металлический сердечник из стали или пермаллоя, на который намотана катушка из медного провода, достаточно большого диаметра. Конструктивно катушка разделена на отдельные сегменты, каждый из которых имеет отвод.

Релейный стабилизатор напряжения работает следующим образом. Пока напряжение сети соответствует номиналу и находится в допустимых пределах, оно передаётся потребителю напрямую. Как только плата управления зафиксирует отклонение напряжения, она подключает реле, которое изменяет коэффициент трансформации, подключая соответствующие секции. В результате, напряжение на выходе устройства, всегда находится в допуске.

Характеристики и сфера применения

Релейный стабилизатор обладает целым рядом преимуществ, которыми определяется его большая популярность:

  • Низкая стоимость
  • Работа в широком диапазоне нагрузок
  • Устойчивость к перегрузкам
  • Хорошая форма напряжения на выходе

Некоторые модели релейных стабилизаторов могут стоить в диапазоне 1500-2000 рублей. Это намного дешевле стоимости стабилизаторов другого типа. Работа данного устройства мало зависит от величины нагрузки. Стабилизатор этого типа способен выдерживать даже двукратные перегрузки, правда в течение непродолжительного времени.

Определённые недостатки в некоторых случаях могут ограничивать применение этого устройства:

  • Невысокая надёжность
  • Большая погрешность
  • Режим мерцания

Надёжность стабилизатора определяется сроком службы реле, контакты которых подгорают, что требует их замены. В отдельных случаях погрешность напряжения на выходе может превышать 10%.

В момент переключения реле, на 15-20 мс происходит обрыв фазы, что вызывает мерцание осветительных приборов и другие неприятные вещи, связанные с эксплуатацией бытовой электронной аппаратуры.

В целом, каких либо ограничений на использование релейного стабилизатора нет, за исключением невысокой точности и прерывистого режима работы.

Электромеханический стабилизатор

Основу стабилизатора этого типа составляет автотрансформатор, обмотка которого не имеет отводов. Он имеет тороидальную конструкцию. В нижней части трансформатора установлен низковольтный серводвигатель. На его роторе закреплён ползунок с графитовой щёткой. По аналогии с релейным стабилизатором, в этом устройстве так же имеется плата контроля и управления.

Электромеханический стабилизатор напряжения работает следующим образом. Изменение напряжения сети измеряется схемой сравнения, которая фиксирует отклонение от номинала в большую или меньшую сторону. Плата управления вырабатывает сигнал на серводвигатель, который перемещает свой ротор на определённый угол.

В результате, контакт ползунка увеличивает или уменьшает напряжение на выходе. Как только напряжение на входе приходит в норму, серводвигатель снова срабатывает, поэтому если сеть нестабильна, перемещение ползунка с контактом происходит постоянно.

Преимущества и недостатки

Электромеханические стабилизаторы могут быть использованы в быту, на производственных объектах, в некоторых медицинских и общеобразовательных учреждениях. Именно электромеханические системы работают в промышленных стабилизаторах большой мощности, которая может достигать 1,5-2,0 МВт. Приборы этого типа имеют свои достоинства и недостатки.

К достоинствам относятся:

  • Высокая точность регулирования;
  • Чистый синусоидальный сигнал;
  • Способность к перегрузкам;
  • Возможность работы в условиях низкого напряжения.

Высокая точность достигается плавной регулировкой при отсутствии дискретных переключающих элементов. Напряжение снимается непосредственно с обмотки трансформатора, который не вносит никаких искажений. Электромеханический стабилизатор допускает кратковременные десятикратные перегрузки. Прибор допускает работу при постоянно низком напряжении, которое может быть 120-140В.

Среди недостатков у стабилизаторов этого типа есть весьма серьёзные:

  • Медленная скорость коррекции;
  • Необходимость в техническом обслуживании;
  • Пожароопасность.

Низкое быстродействие может привести к выходу из строя какой-либо электронной аппаратуры, когда стабилизатор не успеет отработать резкий бросок напряжения. Графитовые щётки могут стираться, что требует их замены, а пыль, попадающая под контакт, может привести к возгоранию самого стабилизатора.

Электронный стабилизатор

Электронным этот стабилизатор называется поскольку в его конструкции отсутствуют любые механические или электромеханические элементы. Вся схема устройства собрана на полупроводниковых элементах.

Принцип работы этого прибора полностью аналогичен принципу работы релейного стабилизатора. Только функцию переключающих реле, здесь выполняют ключи на четырёхслойных полупроводниковых приборах – тиристорах и симисторах. Электронный стабилизатор напряжения стоит заметно дороже, чем стабилизаторы других типов, но, тем не менее, есть ситуации, когда его применение оправдано.

Особенности и характеристики

Полупроводниковый стабилизатор может работать практически со всеми видами бытовой техники.

Это определяется его несомненными достоинствами:

  • Высокое быстродействие;
  • Большой диапазон напряжения;
  • Отсутствие шума.

В отличие от реле, мощные силовые ключи, обеспечивают практически мгновенную реакцию на изменение напряжения на входе устройства. Диапазон напряжения сети, при котором электронный стабилизатор корректно работает достаточно большой, поэтому прибор можно использовать в самых неблагоприятных условиях. Он не боится низких температур, работает бесшумно и не нуждается в техническом обслуживании.

Но и недостатков у данного устройства достаточно:

  • Дискретный способ регулировки;
  • Низкая перегрузочная способность;
  • Искажённая форма напряжения на выходе.

По аналогии с релейным стабилизатором, переключение напряжения осуществляется ступенями. Электронные ключи очень не любят перегрузок и могут выгореть.

Часто в описаниях тиристорных и симисторных стабилизаторов можно прочесть, что они не искажают сигнал на выходе, так как коммутация выполняется в момент перехода синусоиды через ноль. Может быть, у супердорогих моделей с мощными процессорами это так. Практика показала, что электронные стабилизаторы прилично ломают синусоиду, что так же нужно учитывать при выборе устройства.

Стабилизаторы компании «Энергия»

Кроме типа стабилизатора, при его выборе, следует так же обращать внимание на производителя. Одной из ведущих компаний на рынке электрического оборудования является компания «Энергия». Кроме того, что ассортиментный ряд стабилизаторов очень широк, вся продукция полностью адаптирована к российским энергетическим сетям, что отсутствует у большинства зарубежных производителей.

Компания производит релейные, электромеханические и электронные модели, кроме того имеется линейка гибридных моделей, которые совмещают в себе два типа стабилизаторов. Это заметно расширяет возможности их применения. Стабилизаторы выпускаются на мощности от 500 до 30 000 Вт и отличаются отличным качеством и высокой надёжностью.

Какой лучше выбрать?

Чтобы решить, какой стабилизатор напряжения лучше релейный или электромеханический следует точно знать параметры сети. Для этого можно использовать тестер и провести ряд измерений. Если напряжение в пределах определённого времени изменяется быстро и часто, а нагрузка такого типа, что это может ей повредить, то лучше выбрать релейный стабилизатор. Тем более что он стоит недорого. Если изменения незначительны, а нагрузке нужна высокая точность, то электромеханический стабилизатор будет лучшим выбором.

Несколько сложнее решить, какой стабилизатор напряжения лучше — релейный или электронный? Принцип действия у них одинаковый, только электронный стоит дороже. Здесь важным могут быть условия эксплуатации и надёжность. Для работы в условиях холода нужно предпочесть электронный стабилизатор, а если электроника оборудования чувствительна к форме напряжения, то лучше отдавать предпочтение инверторным или релейным стабилизаторам.

Симисторные стабилизаторы напряжения — это прямые родственники тиристорных моделей, но имеют определенные отличия, о них и поговорим на СтабЭксперт.ру.

Тиристорный стабилизатор напряжения

Характеризуется отличным быстродействием и высоким КПД, выдерживает большие токи и имеет достаточный запас по кратковременным перегрузкам. Наработка на отказ собственно самих тиристоров значительно превышает срок службы всего стабилизатора напряжения в целом.

Благодаря микропроцессорному управления и отработанным алгоритмам, тиристорный стабилизатор напряжения совершенно не искажает выходное напряжение, т.к. все переключения происходят только при прохождении синусоиды через «ноль». Он отличается низким уровнем собственного энергопотребления вследствие того, что нет никаких дополнительных внутренних потребителей в виде обмоток реле или серводвигателя.

Поэтому тиристорные стабилизаторы напряжения являются самым совершенным классом устройств стабилизации практически без каких либо недостатков и повсеместно применяются и в быту и на производстве. Дополнительным плюсом является их устойчивая работоспособность при низких температурах (-25…-40°С), что позволяет устанавливать их в неотапливаемых помещениях.

Главные отличия и потребительские качества

Симисторы и тиристоры – полупроводниковые приборы, характеристики которых определяются наличием в пластине полупроводника слоёв с различными показателями проводимости. Принципиальное различие между этими двумя видами электронных ключей состоит в том, что тиристоры пропускают ток в одном направлении, а симисторы делают это в обе стороны.

Таким образом, 1 симистор заменяет тиристорную пару с подключением элементов по встречно-параллельному принципу. Это значит, что схема симисторного стабилизатора напряжения в плане проектирования менее затратная.

Кроме того, этот тип электронных ключей обеспечивает наиболее высокие показатели быстродействия системы нормализации сетевых параметров тока. А это имеет ключевое значение при защите от аномалий входного и выходного тока мощных и высокочувствительных потребителей.

Равно как и симисторное оборудование, тиристорный стабилизатор напряжения работает под управлением микропроцессора. Последний обеспечивает высокую точность и скорость сравнения и обработки входных и выходных параметров тока. При этом все переподключения электронных ключей осуществляются только при условии прохождения синусоиды входного напряжения через нулевую отметку, что полностью исключает искажения сетевых параметров на выходе.

Если сравнивать тиристорный и симисторный стабилизатор напряжения, ключи последнего имеют существенный минус. Заключается он в малой устойчивости к резким всплескам или проседаниям входного тока, к примеру, прииндуктивном характере нагрузки. Поэтому надёжность симисторных стабилизаторов обеспечивает с помощью дополнительных мер защиты.

Большое количество тиристорных стабилизаторов представлено в ассортименте официального дилера компании Энергия.

Тиристорный стабилизатор напряжения функционирует следующим образом:

  1. При изменении входного тока фаза задержки (около 20 мс) используется для замера текущих параметров напряжения на входе;
  2. После сравнения реальных и требуемых токовых характеристик процессор даёт команду на выравнивание выходного напряжения;
  3. Если отклонения входного тока не вышли за допустимые рамки, стабилизатор выравнивает напряжение на выходе до номинального уровня 220В;
  4. При резких избыточных всплесках тока на входе система защиты устройства аварийно отключает питание;
  5. При проседаниях входного напряжения стабилизатор поднимает его значение на выходе настолько, насколько позволяет мощность трансформатора.

Однофазный тиристорный стабилизатор напряжения регулирует выходное напряжение с помощью переподключения витков на обмотках дополнительного трансформатора. Таким же образом работает и трёхфазное оборудование, оснащённое системой синхронизации фазовых блоков.

К достоинствам тиристорных нормализаторов относят:

  • Бесшумность в работе;
  • Долговечность (1 тиристор обеспечивает более 1 млрд срабатываний);
  • Отсутствие дуговых разрядов при выравнивании выходного тока;
  • Низкое энергопотребление;
  • Компактные габариты;
  • Высокое быстродействие;
  • Небольшую погрешность нормализации (не более +/-3% от номинального значения);
  • Широкий диапазон параметров входного тока (в пределах 100-300 В).

Недостатки такого оборудования заключаются в:

  • Ступенчатой стабилизации выходного напряжения;
  • Необходимости перезагрузки устройства в случае «подвисания» электронной схемы;
  • Высокой стоимости.

Тиристорные устройства стабилизации обеспечивают выравнивание выходного тока в рамках 214-226 В, что является весьма высоким показателем. В то же время, они требуют надёжной защиты от перегрева и токовых перегрузок, что приводит к усложнению конструкции оборудования.

Симисторные стабилизаторы: основные плюсы и минусы

Симисторный стабилизатор напряжения работает по схожему принципу с тиристорным, но имеет ряд особенностей, которые нужно обязательно учитывать при выборе.

Во-первых, один симистор занимает площадь, достаточную для размещения 4-6 тиристоров. Как следствие растут габариты и вес всего устройства стабилизации.

Во-вторых, симисторы нагреваются куда сильнее тиристорных ключей, в частности, при возникновении пусковых токов, в несколько раз превышающих рабочие. Это повышает риск выхода из строя электронных ключей при дефиците запаса выходной мощности стабилизатора, который должен составлять как минимум 25% от номинальной потребляемой.

В-третьих, и трёхфазный, и однофазный симисторный стабилизатор напряжения в процессе работы образует кратковременные всплески и провалы нагрузки аналогично с релейными стабилизаторами. Поэтому чувствительные к помехам и аномалиям тока потребители, подключённые к такому нормализатору, должны дополнительно оснащаться элементами, позволяющими компенсировать отклонения параметров напряжения, К примеру, варисторами.

В-четвёртых, симисторные устройства стабилизации весьма сложны в управлении, которое реализуется посредством определённой программной прошивки контроллера. Последний при внештатных режимах работы, например, снижении качества охлаждения или длительных избыточных импульсов на входе может выйти из строя, равно как и прошивка может в любой момент «слететь». Замена схемы – занятие не из дешёвых, однако главную сложность представляет восстановление программы, поскольку производители редко распространяют её содержание.

К прочим недостаткам симисторного оборудования можно отнести:

  • Ступенчатость регулировки параметров тока на выходе, которую можно компенсировать только путём увеличения числа ступеней (определяется соотношением количества витков обмоток трансформатора к количеству электронных ключей);
  • Высокую стоимость;
  • Сложность настойки и обслуживания;
  • Трудоёмкость и сложность ремонта и замены комплектующих.

Что касается достоинств, у симисторных нормализаторов их по меньшей мере несколько:

  • Высокое быстродействие системы — не более 10-20 мс, что составляет половину или всего одну фазу синусоиды нагрузки;
  • Полная бесшумность в работу;
  • Долговечность службы;
  • Высокий КПД.

Наконец, именно симисторные стабилизирующие аппараты обладают наилучшим соотношением надёжности в работе и стоимости, что и определяет их стремительно растущую популярность на рынке.

Дополнительные рекомендации по выбору

При выборе электронного стабилизатора напряжения крайне важно учитывать условия, в которых он будет эксплуатироваться. Например, тиристорное оборудование не может работать в помещениях с влажностью воздуха выше 80%, а симисторное часто нуждается в дополнительном охлаждении и защите от токовых аномалий.

В любом случае облегчить поиск модели, удовлетворяющей требования по защите конкретной электросети, позволит лишь внимательное изучение и сравнение характеристик представителей обеих категорий электронных стабилизаторов.

Виды стабилизаторов напряжения по классу напряжения

Промышленность выпускает широкую гамму стабилизаторов.

Различают однофазные и трехфазные устройства.

По диапазону выходных напряжений электронное оборудование для однофазных сетей рассчитано на 220 – 240 В (популярна также промежуточная градация 230 В), доступны феррорезонансные стабилизаторы на 110 – 120 В.

Бытовое оборудование для трехфазных электросетей обеспечивает выходное напряжение 380 – 415 В вне зависимости от применяемых схемных решений и отдаваемого тока нагрузки.

Техника промышленного назначения может иметь более высокое выходное напряжение: вплоть до 6 – 10 кВ.

Принцип работы, сильные и слабые стороны тиристорных стабилизаторов

При изменении параметров входного тока фаза задержки (длительностью до 20 мс) используется для измерения значения входного напряжения сети.
Сравнив фактические и допустимые токовые характеристики, при необходимости процессор платы управления подает команду на коррекцию напряжения на выходе.
В случаях, когда отклонения входного напряжения находятся в рамках допустимого диапазона, происходит его коррекция до необходимого значения.
При скачках напряжения, выходящих за рамки допустимого диапазона, система защиты обеспечивает аварийное отключение устройства.

Тиристорные стабилизаторы напряжения обладают следующими преимуществами:

  • относительно высокое быстродействие – 20 мс (в сравнении с релейными приборами);
  • высокий КПД, который достигается благодаря отсутствию реле и подвижных элементов;
  • возможность функционирования во внешней среде с высокими или низкими температурами;
  • долговечность и надежность за счёт отсутствия механических деталей;
  • бесшумное функционирование;
  • устойчивость к перегрузкам.

Тиристорные приборы также отличаются высокой точностью стабилизации напряжения на выходе (от 5 до 10 %) по сравнению с релейными моделями, а также широким диапазоном напряжения на входе, который позволяет их использовать в сетях с крайне некачественным напряжением.

Серьезным недостатком тиристорных стабилизаторов является дискретность (ступенчатость) коррекции напряжения. Ступенчатые скачки напряжения, которые появляются при переключении трансформаторных обмоток, ухудшают точность стабилизации, что существенно снижает скорость работы прибора. Из-за этого тиристорные стабилизаторы нельзя использовать для питания нагрузки, особо чувствительной к перепадам напряжения (например, ПК и периферийных устройств, профессиональных аудио- и видеоприборов, а также приборов с электронным управлением).

Кроме того, выходное напряжение тиристорных стабилизаторов имеет форму, отличную от синусоидальной (трапециевидную или с другими искажениями, в зависимости от конкретной модели), что делает нежелательным их использование для питания нагрузок с электродвигателями (например, насосов, систем отопления).

Симисторный стабилизатор

В этом устройстве в качестве электронных ключей, управляющих переключением секций силового трансформатора, используются симисторы. Это полупроводниковые приборы, объединяющие в одном корпусе два тиристора. Симистор, или симметричный тиристор, проводит ток в двух направлениях, поэтому силовой ключ выполнен на одном полупроводниковом приборе.

Симисторный стабилизатор напряжения имеет ряд недостатков по сравнению с тиристорными устройствами. Стабилизатор очень критичен к выбросам напряжения при работе с индуктивной нагрузкой. Вместе с тем он обеспечивает высокую точность регулирования.

В отличие от электромагнитных реле, симисторы переключаются за короткий промежуток времени, а отсутствие контактов и других механических элементов делает такие стабилизаторы очень надёжными. Мощные электронные ключи сильно нагреваются в процессе работы, поэтому симисторы монтируются на радиаторы, что увеличивает габариты прибора. Для лучшего охлаждения электронных компонентов симисторный стабилизатор напряжения оборудуется вентилятором.

Тиристоры и симисторы. В чём разница?

Тиристоры и симисторы – полупроводниковые элементы, управление которыми (изменение их коммутационного состояния) осуществляется подачей положительного потенциала на управляющий электрод. Их отличие заключается в количестве слоев с различной проводимостью в пластине элемента.

Тиристор является преобразователем переменного тока однонаправленного действия. В своей структуре элемент имеет управляющий электрод, анод и катод.

Симистор представляет собой два встречно включенных тиристора, которые располагаются параллельно друг другу. У симистора каждый электрод является анодом и катодом одновременно, благодаря чему этот полупроводниковый переключатель способен проводить ток в двух направлениях.

Далее рассмотрим особенности и отличия устройств с коммутацией, реализованной на тиристорных и симисторных ключах.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Рис.5. Вариант исполнения однофазного стабилизатора

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания.

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести выбор конкретной модели устройства с учетом конкретной области применения.

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

Мощный электронный стабилизатор

Одним из лидеров в производстве энергетических систем является компания «Энергия», она применяет в своих разработках инновационные технологии, что позволяет свести до минимума некоторые недостатки тиристорных стабилизаторов напряжения.

Однофазный тиристорный стабилизатор «Энергия Classic 12 000» представляет собой современное и надёжное устройство с высокими параметрами. Устройство работает в интервале входных напряжений от 125 до 254 вольт. Предельно допустимые величины могут составлять 60 вольт по минимуму и 265 вольт по максимуму. Стабилизатор имеет переключающую схему на 12 ступеней, выполненную на мощных тиристорах. Время переключения не превышает 20 мс.

Стабилизатор имеет защиту от пониженного напряжения, повышенного напряжения и перегрузки. При температуре силового трансформатора свыше 120°C так же срабатывает защита и стабилизатор отключается. Допустимая кратковременная перегрузка до 180%, может составлять 0,3 секунды. Входной фильтр подавляет все виды высокочастотных и импульсных помех. При питании нагрузки с нормальным напряжением сети используется система «байпас». Данный стабилизатор компании Энергия рассчитан на эксплуатацию в отапливаемом помещении с уровнем влажности не более 80%.

Что в итоге?

Сравнивая симисторные и тиристорные стабилизаторы напряжения между собой и с другими видами устройств, можно прийти к следующим выводам:

  • оба типа приборов имеют не только схожие возможности по стабилизации напряжения, но и почти одинаковые недостатки, одним из которых является несинусоидальная форма выходного сигнала;
  • данные стабилизаторы не справляются с защитой высокоточного оборудования;
  • устройства по своим рабочим параметрам совсем ненамного превосходят релейные стабилизаторы напряжения;
  • стоимость приборов гораздо выше, чем стабилизаторов напряжения предыдущих поколений, работающих по аналогичному принципу;
  • при поломке устройств ремонт электронных компонентов также обойдется дороже.

Несмотря на это, симисторные и тиристорные стабилизаторы в настоящее время пользуются большой популярностью: приборы активно применяются для бытовых нужд, так как они издают мало шума при своей работе, неприхотливы в обслуживании и имеют стандартные требования к внешней среде.

Новый тип стабилизаторов напряжения

Симисторные и тиристорные стабилизаторы напряжения сегодня постепенно, но уверенно вытесняет с рынка новый тип устройств – инверторные стабилизаторы напряжения. Разработанные на заводе ГК «Штиль» в 2015 году, устройства получили самые высокие технические характеристики, среди которых:

  • повышенная точность стабилизации (2%);
  • чистый синус на выходе;
  • расширенный диапазон входного напряжения сети (90-310 В);
  • непрерывное регулирование сетевого напряжения;
  • мгновенная скорость срабатывания;
  • универсальное применение.

Больше информации об инверторных стабилизаторах напряжения нового поколения.

Оставьте комментарий