Теплопроводность поликарбоната

В течение последних нескольких лет на рынке строительных материалов практически ежегодно появляются различные новинки. В ряде таковых можно считать и поликарбонат, используемый уже давно в отделочных работах и при оформлении дизайнерских проектов. Такую популярность поликарбонат заслужил по праву за счет необыкновенного практичного набора физических свойств. Например, ни один из строительных материалов не обладает теплопроводностью поликарбоната. Именно об этом свойстве и следует поговорить подробнее.

Схема листа сотового поликарбоната.

Виды поликарбоната

У поликарбоната, применяемого в строительстве, принято выделять два основных вида в зависимости от структуры строения его полотна: монолитный и сотовый.

Монолитный поликарбонат представляет собой плотные листы, его еще можно называть литым. Листы пластика нового поколения значительно отличаются по толщине и некоторым физическим свойствам, в том числе ударопрочности, теплопроводности. Основное использование монолитного поликарбоната — более выгодная и практичная альтернатива стеклянному полотну. Дело осталось за малым: нужно добиться такой же кристальной прозрачности пластика, как у стекла.

Сотовый поликарбонат используется повсеместно. Это и оформление дизайнерских проектов фасадов зданий, покрытие крыш легких строений и обустройство теплиц, и многое другое. Сотовый поликарбонат сильно отличается по строению от монолитных листов. В первую очередь стоит отметить, что он сформирован из двух листов, наложенных друг на друга и объединенных ребрами жесткости, которые образуют полые каналы — «соты». Каналы могут иметь различную величину. Благодаря таким сотам этот материал приобретает множество преимуществ, в том числе и способность к хорошей теплопередаче. Именно поэтому сотовый поликарбонат используется для проектирования комфортных теплиц с благоприятным микроклиматом и достаточной освещенностью, может служить полноценной стеной для малоэтажного строения.

Теплопроводность поликарбоната

Свойства поликарбоната.

Теплопроводность, как физическое свойство, подразумевает под собой некую способность передачи тепловой энергии атомами от одного тела, имеющего больше этой энергии, другому телу, соответственно, меньше наполненному этой энергией. Теплопроводность имеет решающее значение при выборе строительных и отделочных материалов, поэтому подвергается измерению и сопоставлению с конкурентными образцами. Измерить ее можно, вычислив объемы тепла, которые способен провести через себя исследуемый материал толщиной в 1 м, за единицу времени (в секундах). С точки зрения физики каждый материал в такой системе или зависимости будет стремиться к достижению общего равновесия в тепловом отношении, а именно к выравниванию баланса теплоты.

Лучше всего отразить теплопроводность в виде формулы можно при помощи физического закона Фурье. В письменной форме он будет выглядеть так: в определенном режиме плотность энергетического потока будет передаваться за счет способности к теплопроводности пропорционально градиенту температуры. Формула закона Фурье выглядит так:

q= — λ grad (T)

  • где q является вектором плотности потока тепла и количественно выражает объем тепловой энергии, способный пройти через единицу площади исследуемого материала за единицу времени в направлении, перпендикулярном к каждой из осей;
  • λ — характеризует собственно коэффициент теплопроводности;
  • Т — обозначает температуру, при которой происходит передача тепловой энергии. При этом отрицательное значение правой части формулы означает противоположное направление вектора grad T. Совокупность такого выражения и отражает суть закона теплопроводности Фурье.

Теплопроводность различных видов поликарбоната

Схема крепления поликарбоната на опоры.

Теплопроводность, как уже было отмечено, в значительной степени зависит от состава исследуемого материала. В данном случае рассматриваются свойства теплопередачи поликарбоната. учет теплопроводности очень важен при использовании поликарбоната в качестве строительного материала, ведь от него на прямую будет зависеть экономичность проекта в период эксплуатации. Коэффициент теплопроводности позволит определить реальные объемы потерь тепла через поликарбонатные насаждения. Известно, что показатели теплопередачи монолитного поликарбоната превышают на 20% аналогичные показатели для листового стекла и на 30% для полиэтиленовой пленки.

Несмотря на хорошую теплопроводность, монолитный поликарбонат обладает прекрасными противопожарными качествами, гарантируемыми трудновоспламеняемостью материала.

Еще более внушительными показателями теплопроводности обладает сотовый поликарбонат. Ячейки в толще листа такого поликарбоната заполнены воздухом, который постоянно циркулирует и согревается. Отсюда следует, что в сотах образуется подобие воздушной подушки, наполненной постоянно конденсирующимися теплыми парами. Воздух, в свою очередь, является очень плохим проводником для тепла. Логично предположить, что заграждения из сотового поликарбоната будут иметь низкий коэффициент теплопроводности, поскольку наполнены воздухом, и будут служить наилучшим теплоизолятором. Такой эффект позволяет максимально снизить расходы на топливо и отопление помещения в целом, значительно сократить проникновение холодных потоков воздуха внутрь комнат.

Удельный вес поликарбоната.

Согласно закону теплопроводности можно наблюдать такую зависимость, при которой с уменьшением значения коэффициента теплопроводности увеличивается значение положительной температуры внутри помещения, что особенно важно в зимние месяцы. Все эти преимущества дополняются немаловажной легкостью конструкций сотового поликарбоната. Полезно знать, что лист сотового поликарбоната даже при оказании на него некоторых нагрузок может использоваться при температуре окружающей среды до — 40°С зимой и до + 120°С летом. К тому же, уже сейчас создан ряд смесей, которые применяются при необходимости для обработки внешней поверхности сотового поликарбоната, что на порядок понижает коэффициент теплопроводности.

Это значит, что в летние жаркие дни излишняя тепловая энергия не сможет проникнуть внутрь помещения или конструкции теплицы и созданная внутри прохлада останется, а холодными зимами накопленное тепло не будет потеряно через поликарбонатные заграждения и морозный воздух не проникнет внутрь помещения.

Вид поликарбоната с наилучшими теплопроводными свойствами

Можно подвести итоги вышеуказанного материала и определить вид поликарбоната с наилучшими теплопроводными свойствами. Как стало ясно, наилучшую теплопроводность определяет наименьший коэффициент теплопроводности. Из используемых строительных материалов на данный момент самым большим количеством преимуществ обладает сотовый поликарбонат, в их число входит и низкий коэффициент теплопроводности. Это утверждение легко можно проиллюстрировать, приведя сравнительную характеристику теплопроводности некоторых материалов и жидкостей в цифрах: снег — 1,5 Вт/мхК, лед — 2,25 Вт/мхК, вода — 0,56 Вт/мхК, воздух — 0,026 Вт/мхК, стекло — 1,15Вт/мхК. Коэффициент теплопроводности сотового поликарбоната — около 0,2 Вт/мхК, для полиэтиленовой пленки это значение равно 0,30 Вт/мхК.

Стоит сразу отметить, что эти значения измерены и получены для каждого из материалов при одинаковой толщине слоя, если же привести их к реально используемым размерам (например, сопоставить толщину пленки и поликарбоната), то можно увидеть явное превосходство некоторых.

Тогда сотовый поликарбонат превзойдет полиэтилен минимум в двенадцать раз.

Определение теплопроводности поликарбоната на практике

Схема воздействия солнечных лучей на лист поликарбоната.

Теплопроводность является одним из наиболее важных качеств поликарбоната как материала, используемого для строительства. Исходя из этого каждому производителю подобного продукта выгодно, чтобы потребитель смог быстро и удобно найти нужную ему информацию о таком качестве. Как правило, вся информация получена опытным путем, проверена и подробно указана на этикетке или бирке, в крайнем случае с вопросами по разъяснению можно обратиться к продавцу-консультанту магазина строительных материалов. Полезным для каждого может быть вычисление теплопотерь с использованием указанного коэффициента теплопроводности по формуле:

Тп = ПП * К * Рт

  • где Тп — искомая величина теплопотерь;
  • ПП — площадь поверхности, покрытой поликарбонатом, м²;
  • К — коэффициент теплопроводности поликарбоната, Вт/мхК;
  • Рт — разность температур окружающей среды и созданного микроклимата, например теплицы,°С.

Монолитный пластиковый лист может гарантировать теплопроводность на уровне 0,21 Вт/м². В свою очередь, по многим другим показателям он значительно превосходит указанных конкурентов. Снижение потерь тепла напрямую означает финансовую экономию в связи с сокращением затрат на отопление помещения. Важным аспектом при использовании в строительных проектах монолитного поликарбоната как заградительной конструкции является и коэффициент сопротивления теплопередаче остекления, зависящий от толщины и вида материала.

самораспаковывающийся архив (*.exe) — 374 Кб.):

  1. Панели «POLYGAL».
  2. Технические данные.
  3. Стойкость к воздействию химикалиев.
  4. Огнестойкость.
  5. Стойкость к ударным воздействиям.
  6. Стойкость к климатическим воздействиям.
  7. Способность к пропусканию и рассеиванию света.
  8. Теплоизоляция.
  9. Термины, относящиеся к остеклению и солнечной радиации.
  10. Предупреждение выпота (ANTI-FOG).
  11. Основные физические характеристики.

PLASTILUX 1.Поликарбонат свойства

    Поликарбонат сотовый обладает рядом свойств, которыми, в полном объёме, не обладает ни один из других прозрачных материалов, применяемых в строительстве, а именно:

  • Чрезвычайная легкость, малый удельный вес (поликарбонат сотовый весит в 16 раз меньше, чем стекло и в 6 раз меньше, чем акрил аналогичной толщины, что значительно снижает затраты на стоимость опорных конструкций).

  • Высокая ударная прочность (поликарбонат, являясь вязким полимером, в 200 раз прочнее стекла и в 8 раз прочнее акриловых пластиков). Панели из поликарбоната, не разбиваются и не дают трещин, а, следовательно, острых осколков при ударе.

  • Панели сотового поликарбоната выдерживают значительные ветровые и снеговые нагрузки, не рвутся как полиэтиленовая плёнка, что делает их лучшим материалом для изготовления теплиц. Таким образом, панели из поликарбоната устойчивы к ударам града и представляют собой безопасное остекление.

  • Высокая термостойкость (свойства сотового поликарбоната мало зависят от изменений окружающей среды, а критические температуры, при которых этот материал становится хрупким, находятся за пределом зоны эксплуатации).

  • Низкая горючесть (коэффициент Г-2), не воспламенятся в открытом огне, не способствует его распространению и при температурном разрушении не представляет опасности для жизни. Поликарбонат сотовый при воздействии пламени плавится с образованием негорящих паутинообразных волокон и, в отличие от других пластиков, не сопровождается выделением ядовитых веществ.

  • Высокие теплоизоляционные свойства, низкая теплопроводность (коэффициент теплоотдачи 3-4 Вт/кв.м; сопротивление пропусканию тепла выше, чем у обычного однослойного стекла, что позволяет снизить расходы энергии на обогрев и охлаждение примерно на 50%).

  • Отличная шумоизоляция (значительное звукопоглощение по сравнению с однослойными материалами за счет гашения звуковой волны, которая переходит из одной среды в другую). Это позволяет успешно использовать поликарбонат сотовый в качестве шумопоглощающих экранов.

  • Высокая светопроницаемость (прозрачность — до 86%, хорошее рассеивание света, отсутствие тени, выигрыш за счет отражения на перегородках). Прочность на изгиб и на разрыв.

  • Широкий диапазон температур эксплуатации: от -40 до +120 градусов Цельсия, что позволяет использовать сотовый поликарбонат в разных климатических условиях. Наружная поверхность панели покрыта слоем, защищающим от УФ излучения. Этот слой поглощает ультрафиолетовую часть солнечного спектра и обеспечивает постоянство механических и оптических свойств в течение многих лет эксплуатации.

    Сравнительные характеристики сотового поликарбоната ROYALPLAST с ближайшими аналогичным по применению материалом — стеклом:

    Таким образом, уникальная совокупность всех физических свойств сотового поликарбоната, по-настоящему придает ему статус материала нового поколения.

Назад к Содержанию 2.Светопропускающие характеристики поликарбоната

    Светопропускание прозрачных двухслойных панелей сотового поликарбоната достигает достигает 86%. Помимо прозрачных панелей, производятся белые панели с разной степенью светопропускания: от полупрозрачных «опал» с коэффициентом светопропускания 50-75% и максимально насыщенных белых «сайн» с коэффициентом 20-30% до полностью непрозрачных серебристых, позволяющих добиться оптимальных для конкретного применения показателей. Выпускаются также прозрачные сотовые панели, тонированые в синий, бирюзовый, красный, серый, зеленый цвет, а также «бронза» с коэффициентом светопропускания в зависимости от толщины и структуры панелей 25-45%. Cветопропускание панелей сотового поликарбоната ROYALPLAST практически не снижается при долговременной эксплуатации на улице. Жесткое ультрафиолетовое излучение (диапазон менее 400 нанометров), оказывающее вредное влияние на человека, растения и оборудование, практически не проходит сквозь поликарбонатный лист. Пропускание полезных лучей — оптимально. Пропускание сотовым поликарбонатом лучей, расположенных в крайней части инфракрасной зоны спектра (более 5000 нм) минимально, вследствие чего тепло, излучаемое объектами внутри ограждаемого помещения, остается внутри, создавая «тепличный эффект», что является дополнительным преимуществом при использовании этого материала в качестве остекления теплиц, оранжерей, зимних садов и т.д. Все виды панелей сотового поликарбоната ROYALPLAST благоприятно рассеивают свет, многократно отражая лучи проникающего света от всех поверхностей (верхний слой, ребра жесткости, нижний слой). Комфортный приглушенный свет дают поликарбонатные панели «бронзового» цвета. Максимальный эффект светорассеивания достигается в панелях «опал», которые при подсвечивании люминесцентными лампами дают равномерно освещенный «световой экран».

    Изображенная выше диаграмма показывает общие параметры светопропускания листа сотового поликарбоната толщиной 6мм:

    UV — ультрафиолет 136-400 нанометров

    V — видимый свет 400-780 нанометров

    IRp — инфракрасные лучи 780-1400 нанометров

    IRm- инфракрасные лучи >1400-3000 нанометров

    IRI — инфракрасные лучи 3000-1000000 нанометров

    Таблица: Коэффициенты светопропускания (КСП), % листов сотового поликарбоната ROYALPLAST


    Назад к Содержанию

3.Теплопроводность поликарбоната

    Поликарбонат сотовый в 200 раз прочнее и в 6 раз легче стекла и может быть использован, как его заменитель. Воздушная прослойка в панелях сотового поликарбоната — великолепный теплоизолятор. Даже самые тонкие панели сотового поликарбоната толщиной 4мм почти в два раза превосходят по степени теплоизоляции простое остекление. У оконного стекла такой же толщины коэффициент теплопередачи 6,4 Вт/кв.мС.

    Панели ROYALPLAST толщиной 8мм сопоставимы со стеклопакетом, а 16-25мм панели превосходят показатели теплоизоляции стеклопакетов с тройным остеклением. При этом конструкции из сотового поликарбоната не бьются, обладают защитой от ультрафиолетовых лучей и весят на порядок меньше конструкций из стекла, что дает возможность существенно упростить каркас.

    Выигрывают они и по удобству транспортирования и монтажа, а, если есть необходимость, то и демонтажа (специализированные поликарбонатные и алюминиевые профили позволяют изготавливать также сборно-разборные конструкции).

    Таблица: Коэффициенты теплопередачи (КТ) листов сотового поликарбоната ROYALPLAST


    Назад к Содержанию

4.Звукоизоляционные свойства поликарбоната

    Поликарбонат сотовый обладает также хорошими звукоизолирующими параметрами, которые отражены в приведённой ниже таблице.

    Таблица: Коэффициенты акустической изоляции (КАИ) листов сотового поликарбоната ROYALPLAST


    Назад к Содержанию

5.Поликарбонат пожарная безопасность

    Листы сотовые поликарбонатные ROYALPLAST, POLYNEX, SUNNEX соответствуют требованиям технического регламента о требованиях пожарной безопасности (Федеральный закон от 22.07.2008 г. № 123-ФЗ). Сертификат соответствия № С-RU.ПБ30.В.01217. Данный материал относится к группе умеренно воспламеняемых материалов — В2 по ГОСТ 30402-96; по дымообразующей способности: к группе строительных материалов с малой дымообразующей способностью — Д1 по ГОСТ 12.1.044-89; по токсичности продуктов горения: к группе малоопасных строительных материалов — Т1 по ГОСТ 12.1.044-89.

    Поликарбонат сотовый не способствует распространению горения, он не образует горящих капель, при горении лишь происходит вспучивание материала и образуются легкие нити, успевающие остыть, прежде чем упасть.

    И, наконец, образующиеся при плавлении поликарбонатных панелей отверстия способствуют отводу дыма в случае пожара.

    Сотовые поликарбонатные листы не являются кровельным материалом для жилых помещений и материалом для отделки путей эвакуации людей, запрещается использование листов сотового поликарбоната для этих целей.

    Назад к Содержанию

6.Свойства поликарбоната в экстремальных погодных и климатических условиях

    Поликарбонат сотовый ROYALPLAST великолепно чувствует себя в диапазоне температур от -40 до +120 градусов Цельсия, сохраняя все механические и оптические свойства. Для устранения вредного воздействия на материал ультрафиолетовых лучей используется метод поверхностного нанесения прозрачного UV-стабилизирующего слоя на наружную сторону сотовой панели. Толщина UV-защиты составляет не менее 50 микрон. Срок эксплуатации панелей сотового поликарбоната Роялпласт при соблюдении всех рекомендаций производителя составляет 20 лет.

    При использовании изделий из сотового поликарбоната в местах, при которых изделие подвергается механическим воздействиям, необходимо применять листы толщиной не менее 16мм.

    Обращаем внимание на то, что самым главным условием продолжительного срока службы сотового поликарбоната ROYALPLAST является соблюдение всех правил по хранению, перевозке, монтажу и последующей эксплуатации материала. Покупатель самостоятельно несет ответственность за принятие решения о том, что готовое изделие из сотового поликарбоната подходит для конкретной цели, и что реальные условия эксплуатации приемлемы для данного изделия.

    Назад к Содержанию

7.Уход за поликарбонатом

    Для очистки листов от загрязнения или удаления с поверхности материала скопившейся на нем во время эксплуатации пыли и грязи, рекомендуется использовать мягкую ткань или губку, предварительно намочив ее в теплой мыльной воде или растворе моющего средства.

    Важно: запрещается использовать чистящие и моющие средства, включающие в себя: соли щёлочи, альдегиды, фенолы, эфиры, хлор, аммиак, различные амины, анилин, ацетон, метанол и изопропанал, а также различные растворители! Также нельзя для очистки панелей сотового поликарбоната пользоваться ножом или другими острыми предметами, т.к. это может привести к повреждению УФ защиты на поверхности листа и, как следствие, к уменьшению его срока службы.

    Назад к Содержанию

Прозрачный сотовый поликарбонат, или как его еще называют, листовой поликарбонат, производится из поликарбонатного сырья высочайшего качества экструзионным методом.

Сам по себе поликарбонат – это гранулы твердого, прозрачного полимерного пластика. Обработанные на специальном станке, они превращаются в листы поликарбоната, которые очень ценятся строителями за свои непревзойденные технические качества и свойства.

Сотовым его называют из-за особой многослойной конструкции, усиленной многочисленными ребрами жесткости, пространство между которыми заполнено воздухом.

В сравнении с аналогичными стройматериалами – органическое стекло, ПВХ и пр. – ячеистый поликарбонат молод и только начинает завоевывать рынок в нашей стране. Но популярность его неуклонно растет, особенно среди застройщиков. Хотя сотовый поликарбонат успешно и широко используется и во многих других сферах.

Где применяется поликарбонат сотовый

Как очень прочный, легко монтируемый и сравнительно недорогой материал сотовый поликарбонат может применяться во множестве отраслей:

  • в строительстве зданий различных категорий: промышленных помещений, офисных, жилых и т.д.;
  • в рекламной индустрии;
  • для сельскохозяйственных нужд;
  • для сооружения дизайнерских архитектурных конструкций.

Он универсален и доступен, благодаря чему становится все популярнее и востребованнее. Прозрачным поликарбонатом остекляют бассейны, тренажерные залы, солярии, стадионы, оранжереи и теплицы.

Используют в торгово-развлекательных центрах для лифтов, стен, крыш и перегородок, в частном строительстве для остекления веранд, террас, балконов и галерей, в строительстве автостоянок и заправочных станций, вокзалов и аэропортов, а также для объектов наружной рекламы.

Свойства поликарбоната в листах

  • Прочность. Один лист этого материала примерно в двести раз прочнее стекла, равного ему по толщине. Также поликарбонат сверхпрочен на разрыв и изгиб.
  • Светопроницаемость. Помещения, остекленные сотовым поликарбонатом, остаются хорошо освещенными в дневное время суток. Проницаемость света равняется 80-82%. Но при этом, благодаря защитной пленке, нанесенной на поверхность листов еще на заводе, поликарбонат обладает уникальной способностью ловить и задерживать агрессивное ультрафиолетовое излучение.
  • Гибкость. Несмотря на толщину в несколько слоев и дополнительные ребра жесткости, поликарбонат сохраняет высокую гибкость, что значительно облегчает процесс его монтирования. Плитам можно придать какую угодно форму и конфигурацию.
  • Отличная шумоизоляция. Это немаловажно в спортзалах, на вокзалах и в аэропортах, в офисных зданиях и торговых помещениях.
  • Хорошие теплоизоляционные свойства. Поликарбонат отлично поглощает тепло и не отдает его, в отличие от других подобных материалов. Кроме того, он практически не воспламеняется, плавиться поликарбонатные конструкции начинают при температуре свыше 250 градусов по Цельсию.
  • Малый вес. Экономит не только время и рабочую силу при установке, но и финансовые средства при транспортировке, погрузке и разгрузке материала.
  • Стойкость к химическим составам. Это также делает поликарбонат идеальным стройматериалом в сельском хозяйстве и на промышленных предприятиях.

Особенности ухода за поликарбонатом

Хотя производители сотового поликарбоната гарантируют до десяти лет эксплуатационного срока без нарушения основных качеств и характеристик материала, на деле он может прослужить и 15, и 20 лет, и даже больше. Но при условии правильного ухода.

Главное – регулярно очищать поверхность сотовых листов. Делать это нужно так, чтобы не разрушить защитную пленку на его поверхности. Поэтому от щелочных и абразивных средств лучше отказаться.

Для очистки поверхностей малой площади достаточно теплой воды, щадящего чистящего средства (жидкого, а не порошкового или гранулированного) и хозяйственной губки. Для габаритных поверхностей можно применять очистку водой под высоким давлением или очистку горячим паром.

Но химические средства по-прежнему должны использоваться только щадящие.

Перед очищением и промыванием поликарбонатных поверхностей рекомендуется дать им остыть. В зимний период нельзя соскребать снег и лед острыми предметами.

Особенности хранения и использования

Если есть необходимость в длительном хранении сотового поликарбоната, вам нужно подумать о следующем:

  • наличие закрытого помещения, где листы не будут подвергаться прямому воздействию солнечных лучей;
  • защитное покрытие, если нет возможности арендовать помещение: картонные ящики, деревянные щиты. Сверху их нужно утяжелить каким-нибудь грузом, чтобы избежать сдувания ветром;
  • нельзя использовать для покрытия ПВХ или другие материалы, которые могут нарушить свойства поликарбоната при соприкосновении;
  • нельзя хранить сотовый поликарбонат на грунте, необходим поддон.

Сотовый поликарбонат легко гнется, если не превышать допустимый радиус изгиба – он индивидуален для каждого вида в зависимости от его толщины. Нарезка плит производится с помощью дисковой пилы. Тонкие листы можно нарезать специальным ножом.

В любом случае перед нарезкой сотовый карбонат в плитах нужно зафиксировать на поверхности, чтобы избежать вибрации и соскальзывания. В плитах также можно сверлить отверстия, а соединять их и крепить посредством болтов-саморезов.

Производители сотового поликарбоната

Поликарбонат ячеистый производится как в Европе, так и на отечественных заводах, что выбирать – решать вам. Одним из признанных лидеров считается израильская марка Polygal. Также весьма популярен этот стройматериал от немецкого производителя (Makrolon, Rodeca), итальянского (PoliCarb, Daulux), британского (Marlon), российского (Sellex, Novattro, Carboglass, Kronos) и, конечно же, китайского (Vizor, Winnpol, Liyans).

Сотовый прозрачный поликарбонат можно смело назвать строительным материалом будущего. Он надежен, долговечен, универсален и главное – доступен каждому. Вы потратите совсем немного сил, времени и финансовых средств на приобретение и установку – зато будете потом радоваться не один год.

Характеристики сотового поликарбоната

Сравнительная характеристика стекла и сотового поликарбоната.

Материал Вес,
г/м2
Коэффициент
светопропускания, %
Коэффициент теплопередачи, Вт/кв.м Сопротивление на разлом, Мпа Коэф. теплопроводности, Вт/мК
Стекло 10000 65 8,6 40 1,0
Поликарбонат сотовый 800 86 3,9 60 0,2

Уменьшаем теплопотери в теплице

Итак, вы уже несколько месяцев более-менее успешно работали с собственной теплицей, как вдруг заметили, что ранее весьма надежная конструкция стала быстро терять тепло. при этом работает как часы, и нет никаких оснований беспокоиться о ее неисправности. Что же могло случиться? Ответ на данный вопрос мы попробуем найти в этом материале.

Проблема потери тепла теплицей из поликарбоната — что могло произойти

И не важно, дачный парник или же задача будет всего лишь одна — максимально уменьшить тепловые потери, ведь это тепло -Ваши деньги

Первая и самая распространенная причина возникновения подобной проблемы — повреждение поликарбоната. Иногда для такого эффекта достаточно нескольких трещин, пусть и малозаметных вам. Со временем они будут только разрастаться из-за температурных перепадов, соответственно, качество обслуживания под куполом — падать. Ваша задача в данном случае — обследовать теплицу и ликвидировать малейшие повреждения обшивки. Избежать данного явления можно, проводя раз в полгода профилактику парника.
Аналогичные проблемы могут быть и со стеклянными теплицами: недостаточная изоляция углов, трещины, повреждение балок – все это приводит к потере тепла и довольно ощутимой как для температурного режима, поддерживаемого системой инфракрасного обогрева.

Варианты устранения проблем

Еще один распространенный вариант – проблемы с фундаментом. Вполне возможно, что под вашей теплицей ранее было обычное деревянное основание, и вот его срок службы истек. Сам владелец парника по прошествии 5-ти лет (столько и служит подобная конструкция) о данном нюансе вполне мог позабыть, а между тем он был важен. Что нужно делать в таком случае? Если у вас нет претензий к состоянию купола, вскройте фундамент. Заменить его в этот период вы не можете. Но конструкцию можно немного утеплить. Это поможет дожить до конца сезона. После данного срока конструкцию придется разобрать, а сам фундамент – заменить. Желательно на бетонный или деревянный аналог.

Третьим возможным вариантом может быть понижение температуры в связи с ухудшением погодных условий. Бесснежные зимы с серьезными морозами, нетипичные для вашей климатической зоны, могут приводить к подобным последствиям. Как стоит поступить в таком случае? Если вы обнаружили, что проблема кроется в погодных явлениях, рекомендуется провести мероприятия по утеплению парника. Для этого достаточно перекрыть имеющийся купол дополнительным слоем поликарбоната. Материал не нужно брать толще 8-м мм. Это стандартный вариант поликарбоната тепличного. Если же вы захотите взять более плотный аналог, вероятно, придется укреплять конструкцию, а это не всегда удобно.

Какой бы ни была причина, по которой ваш парник быстро теряет тепло, в любом случае работу нужно сконцентрировать на обследовании теплицы и замене ее неисправных частей. Категорически не рекомендуется в данном случае менять температурный режим отопления. Поскольку это может привести к иссушиванию почвы или перегреву корней. Устранить же проблему подобные мероприятия не смогут. А вот ущерб от них даст о себе знать уже очень скоро.

О том, какие бывают смотрите далее видео:

Оставьте комментарий