Воздух как теплоизолятор

На сегодняшний день известны 3 способа передачи тепла:

Конвекция

это передача тепла за счет перемещения материи, например воздуха или воды. Таким образом тепло передается в жидких и газообразных средах. Зимой воздух в наших помещениях нагревается более менее равномерно благодаря естественной конвекции, ну и когда вода течет по трубам отопления — это тоже конвекция, чаще принудительная.

Теплопроводность

передача тепла внутри материи, подобная передаче электрического тока в проводниках. Все пользуются электричеством, но четкой теории, объясняющей, как передается ток в проводниках, пока нет. Тоже самое можно сказать и про теплопередачу. И еще, хорошие проводники электрического тока являются хорошими проводниками тепла и, соответственно, плохими теплоизоляторами. И наоборот, чем выше электрическое сопротивление материала, тем лучше его теплоизоляционные свойства. Чтобы отопительные батареи лучше отдавали тепло их делают из металлов, а чтобы батареи выглядели лучше, их красят белой краской и тем самым ухудшают их теплопроводность, впрочем это отдельная тема.

Радиация

(инфракрасное излучение) — передача тепла за счет изменения формы материи из корпускулярной в волновую. Про радиацию знают все, а с объяснением природы радиации дело обстоит еще хуже, чем с природой теплопроводности или электричества. Излучать тепло могут все тела, и живые и неживые.

Возможно также, что существуют и другие способы передачи тепла, которые пока не то что не объяснены, но даже не открыты.

Для того, чтобы тепло передавалось любым из вышеперечисленных способов, нужна разница температур.

Температура

физическая величина, которую знают даже дети, но никто просто объяснить не может. Определение температуры как «скалярной физической величины, характеризующей приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия» или «величины, обратной изменению энтропии системы при добавлении в систему единичного количества теплоты» мало что проясняет, хотя второе определение, на мой взгляд, более точно выражает физическую сущность температуры. Другими словами если бы не было разницы температур, о температуре никто никогда не узнал. Но так как разница температур все-таки есть и часто, по человеческим меркам, немалая, то возникает потребность в теплоизоляции. А чтобы определить свойства теплоизоляции используется:

Коэффициент теплопроводности λ

это количество тепла, проходящего через вещество толщиной 1 м и площадью 1 м2 за 1 час при разнице температур на входе и на выходе в 10оC. Например, зимой поверхность стены в помещении — это вход, а поверхность стены на улице — это выход, летом — наоборот. Измеряется коэффициент теплопроводности в Вт/(м*К) или Вт/(м*С).

Толщина теплоизоляции

самый простой и самый понятный термин. Любой существующий строительный материал обладает теплоизоляцией, даже полнотелый кирпич и бетон, поэтому толщина несущих конструкций зданий рассчитывается не только с учетом нагрузок, но и с учетом теплопроводности. Раньше считалось, что кирпичная стена толщиной в 51 см не нуждается в дополнительной теплоизоляции, но теперь это мнение во многих странах СНГ пересмотрено.

Плотность теплоизоляционного материала

чем ниже плотность материала, тем выше его теплоизолирующие свойства. Любой материал с плотностью ниже 400 кг/м3 можно считать теплоизоляционным материалом, кроме того такой материал может выполнять некоторые конструктивные функции. Самые лучшие теплоизоляторы имеют плотность 10-50 кг/м3, но такие материалы использоваться как конструктивные элементы не могут.

Количество тепла, передающегося конвекцией, теплопроводностью или радиацией, зависит от различных факторов. Так, например, чем выше температура тела, и чем более тело является черным, тем больше тепла передается радиацией. Подробности изложены в законе Стефана — Больцмана. Количество тепла, передаваемого конвекцией и теплопроводностью, зависит от количества щелей в окнах и дверях, частоты открывания окон и дверей, силы ветра за окном, влажности воздуха и еще десятков факторов. Поэтому трудно точно определить, какое именно количество тепла передается каждым из способов из нашего с таким трудом обогретого жилья бездушной холодной улице. Ну а если приблизительно, то около 20-50% тепла уходит из наших квартир с радиацией, 60-20% при конвекции. Открывание дверей для входа или выхода в дом и наличие щелей в стенах потолках, полах, окнах и дверях тоже приводит к конвекции. Около 20-40% тепла уходит из наших квартир из-за теплопроводности. Максимально снизить конвекцию помогают современные окна и двери, при минимуме щелей около 40-50% тепла уходит с радиацией около 30-40% в результате теплопроводности и около 15-25% в результате конвекции. Большинство простых теплоизоляционных материалов рассчитаны на снижение теплопотерь при передаче тепла теплопроводностью. В гражданском строительстве теплоизоляция используется для стен, полов и потолков, то есть практически для всех элементов конструкций. Также теплоизоляция используется для трубопроводов, но это не наша тема.

На сегодняшний день человечеству известны следующие

Виды теплоизоляционных материалов — веществ:

Вакуум

Это самый лучший и надежный теплоизоляционный материал, точнее будет сказать, что полное отсутствие материала и даже материи гарантирует максимально возможную теплоизоляцию. Именно такая теплоизоляция часто применяется в термосах и иногда при изготовлении стеклопакетов. Тем не менее даже через вакуум тепло может передаваться. В вакууме нет материи и соответственно не возможна теплопроводность и конвекция, а вот излучение проходит даже через вакуум. С одной стороны это плохо, так как выходит, что идеальной теплоизоляции не существует, а с другой стороны хорошо, потому как солнце нас греет благодаря только этому способу теплопередачи. Главный недостаток вакуума — это цена, как ни парадоксально это звучит. Дело в том, что для получения вакуума требуется дорогостоящее оборудование.

Воздух

Самый лучший после вакуума теплоизолятор. Главные достоинства воздуха — самая низкая (после вакуума) теплопроводность, абсолютная доступность, абсолютная бесплатность и абсолютная простота использования. Именно поэтому воздух входит в состав всех ныне используемых теплоизоляционных материалов и чем воздуха в материале больше, тем материал лучше. Поэтому, когда Вы покупаете теплоизоляционный материал, то платите в-основном за воздух, как ни обидно это осознавать. Но ничего странного в этом нет, дело в том что у воздуха, как у теплоизолятора, есть несколько больших недостатков — слишком ненадежный элемент, нагрелся — поднялся, остыл — опустился, или говоря по-научному — конвекция. Кроме того, теплопроводность воздуха очень сильно зависит от влажности. Чем выше процент влаги в воздухе, тем хуже его теплоизоляционные свойства, а при очень высокой влажности воздух из теплоизолятора превращается в теплоноситель. Борьбе с конвекцией и насыщением воздуха влагой и посвящены разработки теплоизоляционных материалов.

Металл

Как уже говорилось, металлы обладают самой высокой теплопроводностью, но при этом и самым высоким коэффициентом отражения тепловой радиации, поэтому металлы никогда не используются как самостоятельный теплоизолятор, а только в качестве вспомогательной теплоизоляции, в тех же термосах и в комбинированных теплоизоляционных материалах (чаще всего алюминий).

Все. Больше никаких теплоизоляционных материалов — веществ, известных человеку, нет, а вот теплоизоляционных материалов, содержащих в той или иной форме воздух, или комбинированных материалов — огромное множество и когда речь заходит о теплоизоляционных материалах, то имеются в виду материалы — контейнеры воздуха. Теплоизоляционные материалы — вещества придуманы довольно давно, теософы утверждают, что отцом, ученые, что матерью, но как бы то ни было, патента на изобретение или на использование ни у кого нет, а потому всеми этими материалами можно свободно пользоваться. Например, когда Вы заказываете окна со стеклопакетами, то обращать внимание нужно на толщину воздушной прослойки между стеклами, а не на количество и хитроумность камер в профиле. Казалось бы, очевидный факт — чем больше расстояние между стеклами, тем лучше общая теплоизоляция окна — но девочки, занимающиеся оформлением заказов, поверить в это не могут. Или еще пример, если Вы зашиваете старую стену гипсокартоном, пластиковыми панелями, панелями МДФ или любым другим материалом, то кроме преследуемых эстетических целей Вы абсолютно бесплатно получаете дополнительную теплоизоляцию. Правда, если на старой стене есть трещины и щели, пропускающие воздух, то их нужно предварительно заделать, иначе толку от такой теплоизоляции будет не много, конвекция и изменяющаяся влажность воздуха сведут на нет такое утепление. Впрочем и при использовании платных теплоизоляционных материалов дефекты стены заделывать все равно придется.

Виды теплоизоляционных материалов — контейнеров воздуха:

Теплоизоляция из минерального сырья.

Минеральная вата

называется так потому, что по структуре напоминает обычную целлюлозную вату. Видов минеральной ваты несколько: стекловата — производится из песка, каменная вата — производится из горных минералов (базальты, мергели, доломиты и др.), шлаковата — производится из расплавов доменного шлака. Главные достоинства таких утеплителей — высокая огнестойкость плюс относительно низкая цена (минералов в Земле много, а песка и подавно). Главные недостатки — возможная опасность для здоровья и низкая влагостойкость. При работе с такими утеплителями необходимо использовать перчатки, очки и даже респиратор. Тот, кто работал с советской стекловатой, знает, какая это гадость, и хотя современная стекловата не такая «колючая», но пользы для здоровья от нее по-прежнему не много, в Германии, например, минеральная вата уже не используется. При использовании таких утеплителей следует дополнительно защищать их поверхность полиэтиленовой пленкой для пароизоляции.

Пеностекло

также изготавливается из песка, но по структуре ближе к пенопласту. Главные достоинства — прочность, высокая огнестойкость, высокая влагостойкость (паронепроницаемость), высокая экологичность. Главный недостаток высокая цена.

Газонаполненные бетоны (пенобетон, газобетон, ячеистый бетон) и бетоны с легкими наполнителями

(шлакобетон, керамзитобетон, перлитобетон и др.). Главные достоинства таких материалов — высокая огнестойкость и то, что они могут использоваться как конструктивные материалы для стен. Главный недостаток — низкая водостойкость.

Для утепления полов часто используется насыпная теплоизоляция из керамзита, получаемого обжигом легкоплавкой глины, вспученного перлита, вспученного вермикулита и др., а также газонаполненные шлаки, остающиеся после выплавки металлов. Главное достоинство таких материалов — низкая цена. Главные недостатки — низкая водостойкость и возможность усадки.

Теплоизоляция из полимеров

Производятся такие материалы в-основном из газа или нефти. Наиболее известные представители таких теплоизоляционных материалов — пенопласт, экструдированный пенополистирол (более плотный пенопласт), пенополиэтилен, и пенополиуретан (большинство потребителей знают этот материал, как монтажную пену, или как поролон, который, действительно, является одним из видов пенополиуретана, но в качестве строительной теплоизоляции не используется из-за короткого срока службы). Главное достоинство таких теплоизоляционных материалов — высокая влагостойкость.

Теплоизоляция из натуральных растительных материалов

Самый древний, самый экологически чистый и на сегодняшний день самый дорогой вид теплоизоляции. Деревянные стены, полы, потолки, пробковое или бамбуковое покрытие и даже обычная вата, которую бабушки засовывают на зиму между оконными рамами — основные представители теплоизоляции из натуральных растительных материалов. Главные недостатки — подверженность горению и гниению, а также низкая влагостойкость. Чтобы повысить влагостойкость, такие материалы подвергаются обработке водостойкими пропитками или финишной обработке лаками или красками. А еще выпускают пробковую подложку под ламинат и паркетную доску, пропитанную битумом или прорезиненную.

Теплоизоляция с использованием натуральных растительных материалов

Древесно-волокнистные и древесно-стружечные плиты низкой плотности используются в-основном как теплоизоляционные материалы. Недостатки у плит такие же как и у теплоизоляции из натуральных растительных материалов плюс сомнительная экологичность (при изготовлении плит используются клеи и смолы). Для повышения влагостойкости такие материалы также подвергаются обработке водостойкими пропитками.

А чтобы было еще веселее, производители выпускают теплоизоляционные материалы под своими торговыми марками, описать которые практически невозможно, упомяну наиболее популярные.

Таблица 1. Виды теплоизоляции.

Примечания:

1. Теплоизоляционные материалы выпускаются разной толщины. Необходимая толщина теплоизоляции определяется теплотехническим расчетом.

2. Теплоизоляционные материалы, которые чаще используются как конструктивные элементы, в таблице не даны. Для таких материалов первостепенным является расчет на нагрузки.

3. Для основных теплоизоляционных материалов Цена за 1 м2 дана для толщины 50 мм.

4. Большинство теплоизоляционных материалов могут выпускаться как в простом виде, так и в комбинированном — с алюминиевой пленкой.

Приветствую вас, мои Читатели и Зрители строительного Блога «Путь Домой”!

Сегодня будем рассматривать технологии реконструкции. Например, когда клиент обратился с домом старой постройки: стена из шлакоблока, воздушный зазор и силикатный кирпич. Будем разбирать какое утепление подойдет дому, построенному по «советским” технологиям?

Полный вопрос: Николай Ков/ Как утеплить дом построенный по «Советским» технологиям (Шлакоблок — воздушная прослойка 7 см — керамический или силикатный кирпич). Какой вид утепления будет более эффективным — утепление пенополистиролом по наружке, засыпка в воздушную прослойку какого либо утеплителя или заливка воздушного пространства полимерным утеплителем?

Для того, чтобы спрогнозировать несколько вариантов ситуации, я загнал в калькулятор данную стенку, но немного схитрил. Дело в том, что шлакоблок это достаточно своеобразный материал. Он имеет крупные пустоты, которые не дают такого уж большого эффекта по утеплению. Это технология, которая позволяет производителю экономить материал. Подробнее об этом вы можете прочитать в книге Фокина о теплоизоляции.

Так как я не знаю о каком шлакоблоке идет речь, я рассмотрел самый распространенный — с двумя перегородками. В калькулятор я внес данные этих перегородок.

1:26 Шлакоблок
3:50 Теплоизолятор
4:46 Утепление снаружи
5:19 Шлакоблок не лучший вариант
6:20 Теплотехнический расчет
11:05 Минвата
13:05 Экология
14:28 Засыпки

Вопросы пользователей

16:58 Возможно воздушная прослойка должна быть замкнутая, но качество строительства тех годов желала быть лучшей , по факту там гуляет ветер
17:46 ЭППС — горит, это ведь опасно. Если ЭППС оштукатурить — она огнеопасна?
21:49 При утеплении дома из шлакоблока ЭППС, как добиться чтобы паропроницаемость исключить полностью? Ведь есть стыки, неплотное прилегание и т.д. Если паропроницаемость стены не исключить, тогда зона конденсации может сместиться в шлакоблок?
22:24 По поводу засыпки керамзита между шлакоблоком и кирпичом у меня вопрос: Можно ли засыпать керамзит между минеральной ватой и облицовочным кирпичом, в вентилируемый зазор? Стена: кирпич+минвата+зазор+кирпич
25:30 При применении ЭППС нужен или нет вентиляционный зазор

С Уважением, Александр Терехов

полуобезьяна примат. сапоги мусульманина шапка , самый легкий халькогенов из президент сша конь седлом казака под, деловой лондон, дерево . приверженец идеи . азиатская водка . пахотное славян древнее орудие политик взглядов крайних правления бразды тройкой . тряпки тело, шест охотника заостренный неподвижный на мели лед , дворянский франции титул во президент сша , намерение предложение голубой смешарик, миртовых семейства растение властелин колец персонаж . на инсара берегах живут хвалебное церковное песнопение . испанский певец. зверек родня соболя насекомых у челюсти баха жанр овощей длинная куча племя индейское родня балалайки . металл мягкий с лжедмитрия село лагерем , дерева стволе на наплыв деревянный духовой инструмент, шутл напрасный труд., сосуд древний рожок с планеты валюта плюк где бани парились патриции футболист российский . самурай столичный минерал л первая . носу полость в лев ., соболь куница похищение невесты . для грунт зуба вспаханное поле изучает луну, для обувь шорттрека реквизит сцене на стреляющий определенный замысел стихотворный метр илиады северный остров японии улучшением с развитие рынка птичьего звуковой фон лютня индусов. тест на авто . труб для прицеп перевозки крем лимонный. боли волна , почва пустынь яиц отк для , против дворян недворян война от солнца крыша анисовая водка . ограда е вторая , млечник рода гриб рыцарь карла великого сударь француз .

Оставьте комментарий